Pretreatment Technologies of Lignocellulosic Biomass: Potentials and Constraints for Ruminant Feed Production

Simon Petrus Ginting, Wisri Puastuti

Abstract

Lignocellulosic biomass (LCB) such as crop residues and agro-industrial wastes are renewable resources and available abundantly. It could play central role in sustainable feeding system of ruminant production. These materials are potential source of fiber to support optimum rumen function and energy supply. However the LCB has important nutritional constraints that limit their utilization as feed for ruminant. This review is intended to discuss nutritional constraints of LCB as ruminant feed and the potentials and challenges of pretreatment processes in upgrading the nutritional quality of LCB. The main polymer compounds in LCB are 30 to 60% cellulose, 20 to 40 % hemicellulose and 15-25% lignin and their inter linkages make the energy contained in the LCB is less extractable by the ruminant digestive system. Physical, chemical and biological pretreatments have been well known as an alternatives to process LCB in order to upgrade the nutritive values of LCB. Recently, novel pretreatment technologies of LCB such as ionic liquid, organosolv, sonication, and new screened rot white fungi (Ceriporiopsis subvermispora) and some older technologies such as alkaline pretreatments and acids pretreatments have been studied and developed particularly for the purpose of biofuel production in the bio refinery industry. Pretreatment technologies have different properties in degrading the lignin, degrading and solubilizing the cellulose and hemicellulose that all relate to the nutritive quality of pretreated LCB. Advantages of pretreated LCB in ruminant animals were indicated by increase in diet digestibility, intake, rumen fermentation and gain. It is concluded that numerous pretreatment technologies are available to upgrade the nutritional quality of LCB, but there are obstacles to use some of these techniques for wide application in ruminant production system.

Keywords

Feed; lignocellulosic biomass; pretreatment technology; ruminants

References

Adesogan, A.T., K.G. Arriola, Y. Jiang, A. Oyebade, E.M. Paula,A.A. Pech-Cervantes, J.J. Romero,L.F. Ferraretto, and D. Vyas. 2019. Symposium review: Technologies for improving fiber utilization. J.DairySc. 102: 5726-5755

Aditya, H.B., T.M.I. Mahlia, W.T. Chong, H. Nur, and A.H. Sebayang. 2016. Second generation biothermal production: A critical review. Renew Sustainable Energy Reviews 66: 631-653.

Agbor, V.B., N. Cicek, R. Sparling, A. Berlin and D.B. Levin. 2011. Biomass pretreatment: fundamentals toward application. Biotechnol. Adv. 2: 675-685.

Ahmadi, F., M. J. Zamiri , M. Khorvash, E. Ziaee, and I. Polikarpov. 2016. Pre-treatment of sugarcane bagasse with a combination of sodium hydroxide and lime for improving the ruminal degradability: optimization of process parameters using response surface methodology. J. Appl. Anim. Res. 44: 287-296

Akram, M.Z., and S. Y. Firincioglu. 2019. The use of agricultural crop residues as alternatives to conventional feedstuffs for ruminants: A Review. Eurasian J. of Agric. Res. 3: 58-66

Alexandratos, N., and J. Bruinsma. 2012. Wold agriculture toward 2030/2050 the revision 2012. Food Agric. Organ U.N. 146. doi.org/10.1016/S0264.8377(03)00047-4

Allen, M.S. 2014. Drivers and limits to feed intake in ruminants. Anim. Prod. Sci. 54:1513-1524

Arora, D.S. R. K. Sharma, and P. Chandra. 2011. Biodelignification of wheat straw and its effect on in vitro digestibility and antioxidant properties. Intl. Biodeteriotation & Biodegradation 65:352-358

Abdel-Azim, S.N., M.A. Ahmed, F. Abo-Donia and H. Soliman. 2011. Evaluation of fungal treatment of some agricultural residues. Egyptian J. of Sheep & Goat Sciences. 6:1 – 13

Balan, V. 2014. Current challenges in commercially producing biofuel from lignocellulosic biomass. ISRN Biotechnology. Article ID 463074 https://dx.doi.org/10.1155/2014/463074 32 p.

Barlianti, V., D. Dahnum, H. Hendarsyah, and H. Abimanyu. 2015. Effects of alkaline pretreatments on properties of lignocellulosic oil palm waste. Procedia Chemistry 16: 195- 201.

Behera, S., R. Arora, N. Nandhagopal and S. Kumar. 2014. Important of chemical for bioconversion of lignocellulosic bimass. Renew Sustain Energy Rev. 36: 1-106.

Beauchemin, K.A. 2017. Invited review: Current perspective on eating and rumination activity in dairy cows. L. Dairy Sci. 101:4762-4784

Bhat,S.M., and Shilpa. 2015. Lignocellulosic feestock conversion, inhibitor detoxification and cellulosic hydrolysis-a review. Biofuels, DOI: 10.1080/17597269.2014.1003702

Blűmmel, M., T.S. Homann-Kee, D. Valbuena, A.J. Duncan, and M. Herrero. 2013. Biomass in crop livestock system in the context of the livestock revolution. Secheresse 24: 330-339. doi:10.1684/sec.2013.0403

Blűmmel, M., B. Steele, and B.E. Dale. 2014. Opportunities from second generation biofuel technologies for upgrading lignocellulosic biomass for livestock feed. CAB Reviews Vol. 9 No. 041.

Brodeur, G., E. Yau, K. Badal, J. Collier, K.B. Ramachandran, and S. Ramakhrisnan. 2011 https://doi.org./10.4061/2011/787532

Casperson, B.A., A. E. Wertz-Lutz, J.L. Dunn, and S. S. Donkin. 2018. Inclusion of calcium hydroxide-treated corn stover as a partial forage replacement in diets for lactating dairy cows. J. Dairy Sci. 101:2027–2036

Chanjula,P., V. Petcharat and A. Cherdthong. 2018. Rumen characteristics and feed utilization in goats fed with biologically treated oil palm fronds as roughage in a total mixed ration. South Afr. J. Anim. Sci. 48: 1049-1056

De Moraes Rocha, G.J., V.M. Nascimento, A.R. Goncalves, V.F.N. Silva, C. Martı´n. 2015. Influence of mixed sugarcane bagasse samples evaluated by elemental and physical– chemical composition. Ind. Crops Prod. 64:52–58

Fariani, A., A. Abrar, G. Muslim., L. Warly. 2015. Suplementation of fermented palm press fibre on digestibility of rice straw and rumen bacteria profile. Pak. J. Nutr.14:80-83

Falls,M., D. Meysing, C. Liang,M. N. Karim, G. Carstens, L. O. Tedeschi, and M. T. Holtzapple. 2017. Development of highly digestible animal feed from lignocellulosic biomass Part 2: Oxidative lime pretreatment (OLP) and shock treatment of corn stover. Transl. Anim.Sci.1:215–220

Financiea, R., M. Moniruzzamana, Y.Uemuraa. 2016. Enhanced enzymatic delignification of oil palm biomass with ionic liquid pretreatment. Biochem. Engineering Journal. 110:1-7

Ginting, S.P., K. Simanihuruk, A. tarigan and K.R. Pond. 2018. Nutritional support for small ruminant development based on oil palm by-products. Wartazoa 28: 189-198

Guerriero,G.,J-F Hausman, J. Strauss, H. Ertan, and K.S. Siddiqui. 2016. Lignocellulosic biomass: Biosynthesis, degradation and industrial utilization. Eng. Life Sci.16:1-16.

Guilherme, A.A. , P. V. F. Dantas , J. C. J. Soares , E. S. dos Santos , F. A. N. Fernandes, and G. R. de Macedo. 2017. Pretreatments and enzyme hydrolysis of sugar cane bagasse aiming at the enhancement of the yield of glucose and xylose. Brazilian J. of Chem.Engineering 34:934-947

Hashim, R. , W.N.A.W. Nadhari, O. Sulaiman, F. Kawamura, S. Hiziroglu, M. Sato, T.Sugimoto, T.G. Seng, and R. Tanaka. 2011. Characterization of raw materials and manufactured binderless particle board from oil palm biomass. Materials and Design. 32:246-254

Hassim, H.A., M. Lourenco, Y.M. Goh, J.J.P. baars, and V. Flevez. 2012. Rumen degradation of oil palm fronds is improved through pre-digestion with white rot fungi but not through supplementation with yeast or enzymes. Can. J. Anim. Sci.92: 79-87

Huang, Y.-F., Chiueh, P.-T., Lo, S.-L., 2016. A review on microwave pyrolysis of lignocellulosic biomass. Sustainable Environment Research. 26, 103-109.

Ichwan, M., and T.W. Son. 2011. Study on organosolv pulping methods of oil palm biomass. In: International Seminar on Chemistry. pp. 364-370

Intasit, R., J. Yeesang, B. Cheirsilp. 2019. Biological pretreatment of empty fruit bunch (EFB) using oleaginous Aspergillus tubingensis TSIP9. J. Water and Envir. Technol. 17: 244–250

Jonathan, S.G., A.N. Okorie, E.O. Garuba, and O.J. Babayemi. 2012. Bioconversion of sorghum stalk and rice straw into value added ruminant feed using Pleurotus pulmonarius. Nature and Science, 10: 10-16

Jayanegara. 2015. Improving Nutritional Quality of Cocoa Pod (Theobroma cacao) through Chemical and Biological Treatments for Ruminant Feeding: In vitro and In vivo Evaluation. Asian Australas. J. Anim. Sci. 28: 343-350.

Karunanithy V., and K. Muthukumarappan. 2011. Optimizing extrusion pretreatment and big blustem parameters for enzymatic hydrolysis to produce biofuel using response surface methodology. Int. J. Agric. Biol. Eng. 4: 61-74

Kholif, A.E. , H. M. Khattab , A. A. El-Shewy , A. Z. M. Salem , A. M. Kholif , M. M. El-Sayed, H.M. Gado, and M. D. Mariezcurrena. 2014. Nutrient digestibility, ruminal fermentation activities, serum parameters and milk production and composition of lactating goats fed diets containing rice straw treated with Pleurotus ostreatus. Asian Australas. J. Anim. Sci. 3:357-364

Kristiani, A., H. Abimanyu, A. H Setiawan, Sudiyarmanto, and F.Aulia. 2013. Effect of pretreatment process by using diluted acid to characteristic of oil palm’s frond. Energy Procedia 32: 183-189.

Kucharska, K., P. Rybarczyk, I. Holowacz, R. Lukajtis, M. Glinka, and M. Kaminski. 2018. Pretreatment of lignocellulosic materials as substrate for fermentation processes. Molecules 23:2937-2968

Kumar, A.K., and S. Sharma. 2017. Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. Bioresour. Bioprocess. 4: 7-26Laconi, E.B., and A.

Latif, A.B., S. Harun, M.S. Sajab, M. Markom, J.M. Jahim. 2018. Ammonia-based pretreatment for lignocellulosic biomass conversion-An overview. J. Eng. Sci. Technol. 13: 1595-1620.

Lee, J., and T.W. Jeffries. 2011. Efficiencies of acid catalysts in the hydrolysis of lignocellulosic biomass over a range of combined severity factors. Biosour. Technol. 102: 5884-580

Lee,J.C.J. Houtman , H. Kim, I. Choi, T.W. Jeffries. 2011. Scale-up study of oxalic acid pretreatment of agricultural lignocellulosic biomass for the production of bioethanol. Biores. Technol. 102: 7451-7456.

Lini, F.Z., T. Widjaja, N. Hendrianie, A. Altway, S. Nurkhamidah, and Y.Tansil. 2018. The effect of organosolv pretreatment on optimization of hydrolysis process to produce the reducing sugar. MATEC Web of Conferences 154, 01022. The 2nd International Conference on Engineering and Technology for Sustainable Development (ICET4SD 2017). pp 7

Lucas, M., S.K. Hanson, G.L. Wagner, D.B. Kimball and K.D. Rector. 2012. Evidence for room temperature delignification of wood using hydrogen peroxide and manganese acetate as catalyst. Bioresour. Technol. 11: 174-180.

Mafa, M.S., S. Malgas, A. Bhattacharya, K. Rashamuse and B.I. Pletschke. 2020. The effects of alkaline pretreatment on agricultural biomass (corncob and sweet sorghum bagasse) and their hydrolysis by a termite-derived enzyme cocktail. Agronomy. 10, 1211; doi:10.3390/agronomy10081211

Mahesh, M.S., and M. Mohini. 2013. Biological treatment of crop residues for ruminant feeding: A review. Afr. J. Biotechnology 12: 4221-4231

Malik, K., J. Tokkas, R. C. Anand, and N. Kumari. 2015. Pretreated rice straw as an improved fodder for ruminants-An overview. J. Appl.and Nat.Sci. 7: 514-520.

Maryana,R., D. Ma'rifatun , A. Wheni , K.W. Satriyo and , W. A. Rizal. 2014. Alkaline pretreatment on sugarcane bagasse for bioethanol production. Energy Procedia 47: 250 – 254

Metri, Y, L. Warly,Suyitman. 2018. Biodegradation of lignin by white rot fungi (Pleurotus ostreatus) to decrease the fibre components in the palm midrib. Pak. J. Nut 17:71-75

Mor,P., B. Bals, A. K. Tyagi, F. Teymouri, N. Tyagi, S. Kumar, V. Bringi, and M. VandeHaar. 2018. Effect of ammonia fiber expansion on the available energy content of wheat straw fed to lactating cattle and buffalo in India. J. Dairy Sci. 101:7990-8003

Mor, P., B. Bals, S. Kumar, N. Tyagi, J.K. Reen, B. Tyagi, P.K. Choudhury,and A.K. Tyagi. 2019. Influence of replacing concentrate mixture with AFEX pellets on rumen fermentation, blood metabolites and acetamide content in the rumen of crossbred (Alpine x Beetle) female goats. Small Rumin. Res. 170: 109-115

Mottet, A., C. de Haan, A. Falcucci, G. Tempio,C. Opio and P. Gerber. 2017. Livestock: On our plates or eating at our table? A new analysis of the feed/food debate. https://dx.doi.org/10.1016/j.gfs.2017.01.001

Muscat, A., E. M. de Olde, I.J.M. de Boer, R. Ripoll-Bosc. 2019. The battle for biomass: A systematic review of food-feed-fuel competition. Global Food Security, https://doi.org/10.1016/j.gfs.2019.10033

Mustabi, J., Wedawati and A.K. Armayanti. 2018. Improving quality and digestibility of cocoa pod with white rot fungi. IOP Conf. Series: Earth and Environmental Science 157. doi:10.1088/1755-1315/157/1/012002

Mokomele, T., L. da Costa Sousa, B. Bals, V. Balan, N. Goosen, B.E. Dale, and J.F. Grogens. 2018. Using steam explosion or AFEX to produce animal feed in a biorefinery based on sugarcane residues. Biofuel Bioproduct & Biorefining 12: 978-996

Montgomery, L.F. R., and G. Bochmann. 2014. Pretreatment of feedstock for enhanced biogas production. D. Baxter (Ed.), IEA Bioenergy. pp.24.

Nayan, N. , A.S.M. Sonnenberg, W.H. Hendriks and J.W. Cone. 2018. Screening of white-rot q fungi for bioprocessing of wheat straw into ruminant feed. J. Appl. Microbiol. doi:10.1111/jam.13894

Nazir, N., Novelina, E. Juita, C. Amelia, and R. Fatli. Optimization of pre-treatment process of cocoa pod husk using various chemical solvents. 2016. Int. J. Adv. Sci. Eng. Information Technol. 6:403-409.

Nazratul, N. , F.M.Y.Rakib, M.R.M., Zailan, and H. Yaakub. 2019. Nutritive composition of oil palm empty fruit bunch fibers treated with mycelia culture of Lingzhi (Ganoderma lucidum) as a potential ruminant feedstuff. Mal. J. Anim. Sci. 22: 35-46

Nitsos, R., and U. Rova. 2017. Organosolv fractionation of softwood biomass for biofuel and biorefinary application. Energies 11:50

Owen,H., T. Smith and H.P.S. Makkar. 2012. Succes and failure with animal nutrition practices and technologies in developing countries. A synthesis of an FAO e-conference. Anim. Feed Sci. Technol. 174:211-226.

Panahi, H.K.S., M. Dehhaghi, M.Aghbashlo, K. Karimi, and M. Tabatabaei. 2020. Conversion of residues from agro-food industry into bioethanol in Iran: An under-valued biofuel additive to phase out MTBE in gasoline. Renewable Energy 145:699-710.

Puastuti W, Yulistiani D, Mathius IW, Giyai F, Dihansih E. 2010. Ransum berbasis kulit buah kakao yang disuplementasi Zn organik: respon pertumbuhan pada domba. JITV. 16:269- 277.

Puastuti W, Yulistiani D. 2011. Utilization of urea and fish meal in cocoa pod silage based rations to increase the growth of Etawah crossbred goats. In: Ali A, Kamil KA, Alimon AR, Orskov, Zentek J, Tanuwiria UH, editors. Proc 2nd Int Semin AINI Feed Saf Heal Food. Jatinangor, July 6-7, 2011. Bandung (Indonesia): Padjadjaran University. p. 463-469.

Rizal, N.A., M.F. Ibrahim, M. Zakaria, E.K. Bahrin, S. Abd.-Aziz and M. Hassan.2018. Combination of superheated steam with laccase pretreatment together with size reduction to enhance enxymatic hydrolysis of oil palm biomass. Molecule 23: 811-

Rusli, N.D., M. A.Azmi, K. Mat, C.H. Hasnita, M. Wan-Zahari, K.Azhar, M.Zamri-Saad, and H. A. Hassim. 2019. The effect of physical and Bbiological pre-treatments of oil palm fronds on in vitro ruminal degradability. Pertanika J. Trop. Agric. Sc. 42: 791 – 805

Saha, B.C., M.A. Cotta. 2014. Alkaline peroxide pretreatment of corn stover for enzymatic saccharification and ethanol production. Industrial Biotechnol. Vol.10. No.1: 34-41

Salman, F.M , R.I. El-Kadi, H. Abdel–Rahman, S.M. Ahmed, M.I. Mohamed and M.M. Shoukry. 2008. Biologically Treated Sugar Beet Pulp as a Supplement in Goat Rations. Int. J. Agri. Biol.10: 412-416

Schiere, J.B. 2010. Cereal straw as ruminant feeds: problem and prospects revisited. Animal Nutr. and Feed Technol. 10S:127-153

Sharma, R.K., and D.S. Arora. 2014. Bioprocessing of wheat and paddy straw for their nutritional up-grading. Bioprocess Biosyst. Eng. 37: 1437-1445

Shreck, A.L., B. L. Nuttelman, J. L. Harding, W. A. Griffin, G. E. Erickson, T. J. Klopfenstein, and M. J. Cecava. 2015. Digestibility and performance of steers fed low-quality crop residues treated with calcium oxide to partially replace corn in distillers grains finishing diets. J. Anim. Sci. 93:661–671

Shrivastava, B., K.K. Jain, A.Karla, and R.C. Kuhad. 2014. Bioprocessing of wheat straw into nutritionally rich and digested cattle feed. Scientific Report. 4:6360 DOI: 10.1038/srep06360

Sirisan, V., V Pattarajinda, and S. Duanyai. 2019. Effect of feeding sugarcane bagasse treated with alkali and white rot fungi on dairy cow performance, blood metabolite and ruminal fermentation. Indian J. Anim. Res. DOI: 10.18805/ijar.B- 1084 | Article Id: B-1084

Swain, M.R., and C. Krishnan. 2015. Improved conversion of rice straw to ethanol and xylitol by combination of moderate temperature ammonia pretreatment and and sequencing fermentation using Candida tropicalis. Industrial Crops and Products 77: 1039-1046

Talaiekhozani,A.,and S. Rezania. 2020. A critical review on the various pretreatment technologies of lignocellulosic materials. J. Env. Treatment Tech. 8: 925-935

Tan,H.T., K.T. Lee, ans A.R. Mohamed. 2011. Pretreatment of lignocellulosic palm biomass using a solvent-ionic liquid [BMIM] Cl for glucose recovery: An optimization study using respons surface methodology. Carbohydr. Polym. 83: 1862-1868.

Tao, L., L.X. Zhang, Y.Tu.N.F. Zhang, B.W.Si. T. Ma, and Q.Y. Diao. 2016. Improving thr in situ ruminal degradability of maize stalk using inoculant in dorper x thin-tailebhan crossed ewes. Small Rumin. Res.144: 119-125.

Uppugundla,N., L. da Costa Sousa, S. P.S. Chundawat, X.Yu, B. Simmons, S. Singh, X. Gao, R. Kumar, C.E. Wyman,B.E. Dale and V. Balan. 2014. A comparative study of ethanol production using dilute acid, ionic liquid and AFEX™ pretreated corn stover. Biotechnol. for Biofuels 7:72-85

Valbuena, D., H.T. Sabine, O. Erenstein, N. Teufel, A. Duncan, T. Abdoulaye, B. Swain, K. Kekonnen, I. Germaine and B. Gérard. 2015. Identifying determinants, pressure and trade-off of crop residue use in mixed smallholder farms in Sub-Saharan Africa and South Asia. Agric. Syst. 134: 107-118.

Van Kuijk, S.J.A., A.S.M. Sonnenberg, J.J.P. Baars, W.H.Hendricks and J.W. Cone. 2015. Fungal treated lignocellulosic biomass as ruminant feed ingredient: A Review. Biotechnol. Adv.33:191-202

Van Soest, P.J. 2006. Rice straw, the role of silica and treatments to improve quality. Anim. Feed Sci. and Technol. 130: 137-171.

Van Zanten, H.H.E., M.K. van Ittersum, and I.J.M.De Boer. 2019. The role of farm animals in a circular food system. Global Food Security 21: 18-22.

Wang, K. , X. Nan , J.Tong, G. Zha , L.Jiang, and B. Xiong. 2020. Steam explosion pretreatment changes ruminal fermentation in vitro of corn stover by shifting archaeal and bacterial community structure. Frontier in Microbiology Vol. 11 Article 2027:1-10

Wang, Y., T.A. McAllister, and J.H. Lora. 2017. Effect of purified lignin on in vitro rumen metabolism and growth performance of fee lot cattle. Asian-Austral. J. Anim. Sci. 30: 392- 399.

Weimer, P.J., J. B. Russel, and R.E. Muck. 2009. Lessons from the cow: What the ruminant animal can teach us about consolidated bioprocessing of cellulosic biomass. Biores. Technol. 100: 5323-5331.

Widiawati, Y., R.H. Matondang, C.T. Rahayu, I.R. Hidayat, B.A. Ramadhan and M.I. Fauzi. 2019. Bahan Pakan Ruminansia Berbasis Produk Samping/Biomassa Industri Perkebunan. IPB Press. 226 p.

Wu, H., Z. Zhou, Y. Yang, and Q. Meng. 2020. Effect of steam explosion of oil palm frond and empty fruit bunch on nutrient composition and ruminal fermentation characteristics. Trop. Anim. Health and Prod. 52:1223–1228

Zakaria, M.R. by the animal, S. Hirata, M.A. Hassan. 2014. Combine pretreatment using alkaline hydrothermal and ball milling to enhance enzymatic hydrolysis of oil palm mesocarp fibre. Bioresour.Technol. 169: 236-243.

Refbacks

  • There are currently no refbacks.

Copyright (c)  2021 WARTAZOA. Indonesian Bulletin of Animal and Veterinary Sciences

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.