Mitigation of Enteric Methane Emission through Feed Modification and Rumen Manipulation

Agustin Herliatika, Y Widiawati

Abstract

The major of  gas emission in the livestock  sector are in the form of methane produced by microbial activity in the rumen. The emission of methane cause global warming and is predicted to keep increasing. Feed modification and rumen manipulation are important ways that can be used to mitigate methane emission. Based on this condition, this paper aims to describe several ways to mitigate methane emission using feed and rumen modification for smallholder farmers. Feed modification can be done using high Non-Fiber Carbohydrate (NFC) content in feed and also using balance nutrient feed. Meanwhile, rumen modification can be done through inlcusion of feed additive, microbial products, and oils. Providing feed contains high NFC as much as 21.8-53%DM would decrease methane emission by 3.03-28.33%. While providing feed contains balance nutrients would potentially decrease 21.87% of methane emission. Feed additive addition as much as 0.0011-12%DM decreased 0.59-78% of methane emission. Bacterial inclusion as much as 0.7x108 – 3,6x1011CFU decreased 0- 18.57% of methane emission. Oil or fat inclusion as much as 6%DM decreased 6.02-24.53% of methane emission. A combination of methods can be used to optimize methane mitigation and it can be applicable for farmers to raise their livestock in friendly environment.

Keywords

Enteric methane; rumen modification; feed modification

Full Text:

PDF

References

Aazami MH, Tahmasbi AM, Ghaffari MH, Naserian AA, Valizadeh R, Ghaffari AH. 2013. Effects of Saponins on Rumen Fermentation, Nutrients Digestibility, Performance, and Plasma Metabolites in Sheep and Goat Kids. Ann Rev Res Biol. 4: 596-607

Abdullah L. 2010. Herbage production and quality of shrub Indigofera treated by different concentration of foliar fertilizer. Med Pet. 33:169-175.

Adejoro FA, Hassen A, Akanmu AM, Morgavi DP. 2020. Replacing urea with nitrate as a non-protein nitrogen source increase lambs’ growth and reduces methane production, whereas acacia tannin has no effect. J Anim Feed Sci Tech. 259:1-9.

Agus F, Santoso I, Dewi I, Setyanto P, Thamrin S, Wulan YC, Suryaningrum F (eds). 2013. Pedoman teknis perhitungan baseline emisi dan serapan gas rumah kaca sektor berbasis lahan: Buku I landasan ilmiah. Jakarta (Id): Badan Perencanaan Pembangunan Nasional, Republik Indonesia.

Arndt C, Powell JM, Aguerre MJ, Crump PM, Wattiaux MA. 2015. Feed conversion efficiency in dairy cows: repeatability, variation in digestion and metabolism of energy and nitrogen, and ruminal methanogens. J Dairy Sci. 98:1-13.

Benaouda M, Martin C, Li X, Kebreab E, Hristov AN, Yu Z, Yanez-Ruiz DR, Reynolds CK, Crompton LA, Dijkstra J, Bannink A, Schwarm A, Kreuzer M, McGee M, Lund P, Hellwing ALF, Weisbjerg MR, Moate PJ, Bayat AR, Shingfield KJ, Peiren N, Eugene M. 2019. Evaluation of the performance of existing mathematical models predicting enteric methane emissions from ruminants: animal categories and dietary mitigation strategies. Anim Feed Sci Tech. 255:1-20.

Boonyanuwat K, Van KL, Sithambaram S, Widiawati Y. 2013. Improved inventory and mitigation of greenhouse gases in livestock production in south east asia. A final report submitted to Livestock Emissions & Abatement Research Network (LEARN)

Casanas MAA, Rangkasenee N, Krattenmacher N, Thaller G, Metges CC, Kuhla B. 2015. Methyl-coenzyme M reductase A as an indicator to estimate methane production from diary cows. J. Diary Sci. 98:4074-4083.

Castro-Montoya J, Peiren N, Cone JW, Zweifel B, Fievez V, Campeneere SD. 2015. In vivo and in vitro effects of a blend of essential oils on rumen methane mitigation. J Liv Sci. 180:134-142.

Collins WJ, Christopher PW, Peter MC, Chris H, Jason L, Stephen S, Sarah EC, Edward CP, Anna BH, Garry H and Tom P. 2018. Increased importance of methane reduction for a 1.5 degree target. Environ. Res. Lett. 13:1-9. https://doi.org/10.1088/1748-9326/aab89c

Criscioni P, Fernandez C. 2016. Effect of rice bran as a replacement for oat grain in energy and nitrogen balance, methane emissions and milk performance of Murciano-Granadina goats. J Dairy Sci. 99:280-290.

Du W, Hou F, Tsunekawa A, Kobayashi N, Ichinohe T, Peng F. 2019. Effects of diet inclusion of common vetch hay versus alfalfa hay on the body weigh gain, nitrogen utilization efficiency energy balance, and enteric methane emissions of crossbred simmental cattle. Animals. 9:1-18.

Duffield TF, Merrill JK, Bagg RN. 2012. Metaanalysis of the effects of monensin in beef cattle on feed efficiency, body weight gain, and dry matter intake. J. Anim. Sci. 90:4583–4592. https://doi.org/10.2527/jas.2011-5018

Durand FC, Ameilbonne A, Auffret P, Bernard M, Mialon MM, Duniere L, Forano E. 2019. Supplementation of live yeast based feed additive in early life promotes rumen microbial colonization and fibrolytic potential in lambs. Scientific Report. 9:19216. https://doi.org/10.1038/s41598-019-55825-0

Eugene M, Martin C, Mialon MM, D Krauss, G Renand, M Doreau. 2011. Dietary linseed and starch supplementation decreases methane production of fattening bulls. J Anim Feed Sci Tech. 166-167:330-337.

FAO (Food and Agriculture Organization). 2015. Statistics from www.faostat.fao.org, update November 2015.

Garnsworthy PC, Craigon J, Hernandez-Medrano JH, Saunders N. 2012. Variation among Individual Dairy Cows in Methane Measurements Made on Farm during Milking. J Dairy Sci. 95:3181-3189. https://dx.doi.org/10.3168/jds.2011-4606

Galindo J, Gonzalez N, Abdalla AL, Abberto M, Lucas RC, Dos Santoso KC, Santos MR, Louvandini P, Moreira O, Sarduy L. 2016. Effect of a raw saponin extract on ruminal microbial population and in vitro methane production with star grass (Cynodon nlemfuensis) substrate. Cuban J Agri Sci. 50:77-88.

Garrido A, Gomez-Cabrera A, Guerrero JE, Marquardt RR. 1991. Chemical composition and digestibility in vitro of Vicia faba L. Cultivars varying in tannin content. Anim Feed Sci Tech. 35:205-211.

Ginting SP. 2011. Teknologi peningkatan daya dukung pakan Kawasan hortikultura untuk ternak kambing. Wartazoa. 21:99-107.

Gislon G, Colombini S, Borreani G, Crovetto GM, Sandrucci A, Galassi G, Tabacco E, Rapetti L. 2020. Milk production, methane emissions, nitrogen, and energy balance of cows fed diets based on different forage systems. J Dairy Sci. 103:8048-8061

Grainger C, Beauchemin KA. 2011. Can enteric methane emissions from ruminants be lowered without lowering their production? Anim Feed Sci Tech. 166-167: 308-320.

Haryanto B, Thalib A. 2009. Emisi metana dari fermentasi enterik: kontribusinya secara nasional dan faktor-faktor yang mempengaruhinya pada ternak. 2009. Wartazoa. 19:157-165

Hidalgo DE, Gilliland T, Deighton MH, O’Donovan M, Hennessy. 2014. Milk production and enteric methane emissions by dairy cows grazing fertilized perennial ryegrass pasture with or without inclusion of white clover. J Dairy Sci. 97:1400-1412.

Hatew B, Podesta SC, Van Laar H, Pellikaan WF, Ellis JL, Dijkstra J, Bannink A. 2015a. Effect of dietary starch content and rate of fermentation on methane production in lactating dairy cows. J Dairy Sci. 98:486-499.

Hatew B, Cone JW, Pellikaan WF, Podesta SC, Bannink A, Hendriks WH, Dijkstra J. 2015b. Relationship between in vitro and in vivo methane production measured simultaneously with different dietary starch sources and starch levels in dairy cattle. J Anim Feed Sci Tech. 202:20-31.

Hino T. 1981. Action of monensin on rumen protozoa. Jpn. J Zootech Sci. 52:171–179.

Hu W, Liu J, Wu Y, Guo Y, Ye J. 2006. Effects of tea saponins on in vitro ruminal fermentation and growth performance in growing Boer goat. Archives of Anim Nutr. 60: 89-97.

IPCC (Intergovernmental Panel on Climate Change). 2006. Emission from Livestock and Manure management. Guidelines for National Greenhouse Gas Inventories. Chapter 10. Pp. 10.28-10.29; 10.38-10.39

IPCC (Intergovernmental Panel on Climate Change). 2014. 2013 Supplements to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands. Edited by T Hiraishi, T Krug, K Tanabe, N Srivastava, J Baasansuren, M Fukuda, TG Troxler. IPCC: Switzerland.

Jadhav RV. 2014. Studies on effect of supplementation of tea seed saponin on growth performance and nutrient utilization in goats. M.V.Sc. Thesis, IVRI, Izatnagar, India.

Jayanegara A, Togtokhbayar N, Makkar HPS, Becker K. 2009. Tannins determined by various methods as predictor of methane production, reduction potential of plants by an in vitro rumen fermentation system. Animal Feed Sci Tech J sci Direct. 150: 230-237.

Jayanegara A, Wina E, Soliva CR, Marquardt S, Kreuzer M, Leiber F. 2011. Dependence of forage quality and methanogenic potential of tropical plants on their phenolic fractions as determined by principal components analysis. Animal Feed Sci Tech J sci Direct. 163: 231-243.

Jayanegara A, Goel G, Makkar HPS, Becker K. 2015. Divergence between purifie hydrolsable and condensed tannin effect on methane emission, rumen fermentation, and microbial population in vitro. Animal Feed Sci Tech J sci Direct. 209: 60-68.

Jeyanathan J, Martin C, Eugene M, Ferlay A, Popova M, Morgavi DP. 2019. Bacterial direct-fed microbials fail to reduce methane emissions in primiparous lactating dairy cows. J Anim Sci Biotech. 10:1-9.

Judy JV, Bachman GC, Brown-Brand TM, Fernando SC, Hales KE, Miller PS, Stowell RR, Kononoff PJ. 2018. Energy balance and diurnal variation in methane production as affected by feeding frequency in Jersey cows in late lactation. J Dairy Sci.101:10899-10910.

Kang J, Zeng B, Tang S, Wang M, Han X, Zhou C, Tan Z. 2016. Effects of momordica charantia saponins on in vitro ruminal fermentation and microbial population. Asian-Australasian J Anim Sci. 29: 500.

Kebreab E, Clark K, Wagner-Riddle C, France J. 2006. Methane and nitrous oxide emissions from Canadian animal agriculture: A review. Can J Anim Sci. 86:135-158.

Khiaosa-ar R, Metzler-Zebeli BU, Ahmed S, Muro-Reyes A, Deckardt K, Chizzola R, Bohm J, Zebeli Q. 2015. Fortification of dried destillers grains plus solubles with grape seed meal in the diet modulates methane mitigation and rumen microbiota in rusitec. J Dairy Sci. 98:1-16.

Knapp JR, Laur GL, Vadas PA, Weiss WP, Tricarico JM. 2014. Invited review: Enteric methane in dairy cattle production: quantifying the opportunities and impact of reducing emissions. Review. J Dairy Sci. 97: 3231-3261.

Lan W, Yang C. 2019. Ruminal methane production: associated microorganisms and the potential of applying hydrogen-utilizing bacteria for mitigation. Review J Sci Tot Env. 654:1270-1283.

Laubach J, Grover SPP, Pinares-Patino CS, Molano G. 2014. A micrometeorological techniquefor detecting small differences in methane emissions from two groups of cattle. J Atmospheric Environm. 98:599-606.

Li W, Powers W. 2015. Effects of saponin extracts on air emission from steers. Anim Sci. 90: 4001-13.

Mamuad LL, Kim SH, Biswas AA, Yu Z, Cho KK, Kim SB, Lee K, Lee SS. 2019. Rumen fermentation and microbial community composition influenced by live enterococcus faecium supplementation. AMB Expr. 9:1-12.

Manatbay B, Cheng Y, Mao S, Zhu W. 2014. Effect of gynosaponin on rumen in vitro methanogenesis under different forageconcentrate ratios. Asian Australasian J Anim Sci. 27: 1088-97.

Mara FPO, Mulligan FJ, Cronin EJ, Rath M, Caffrey PJ. 1999. The nutritive value of palm kernel meal measured in vivo and using rumen fluid and enzymatic technology. J Livestock Prod Sci. 60:305-316.

Monteny GJ, Bannink A, Chadwick D. 2006. Greenhouse gas abatement strategies for animal husbandry. Agriculture, Ecosystems and Environment. 112:163-170.

Moss AR, Jouany JP, Newbold J. 2000. Methane production by ruminants: its contribution to global warming. Review. Ann Zootech. 49:231-253.

Olijhoek DW, Lovendahl P, Lassen J, Hellwing ALF, Hoglund JK, Weisbjerg MR, Noel SJ, McLean F, Hojberg O, Lund P. 2018. Methane production, rumen fermentation, and diet digestibility of Holstein and Jersey dairy cows being divergent in residual feed intake and fed at 2 forage-to-concentrate ratios. J Dairy Sci. 101:9926-9940.

Pal K, Patra AK, Sahoo A, Kumawat PK. 2015. Evaluation of several tropic tree leaves for methane production potential, degradability and rumen fermentation in vitro. Livestock Sci. 180:98-105.

Patra AK. 2014. A meta-analysis of the effect of dietary fat on enteric methane production, digestibility and rumen fermentation in sheep, and a comparasion of these responses between cattle and sheep. Livestock Sci J Sci Direct. 162: 97-103.

Patra AK, Saxena J. 2010. A new perspective on the use of plant secondary metabolites to inhibit methanogenesis in the rumen. Phytochemistry. 72:1198-1222.

Patra AK, Yu Z. 2013a. Effective reduction of enteric methane production by a combinnation of nitrate and saponin without adverse effect on feed degradability, fermentation, or bacterial and archaeal communities of the rumen. Biores technol J Sci Direct. 148: 352-360.

Patra AK, Yu Z. 2013b. Effect of coconut and fish oils on ruminal methanogenesis, fermentation, and abudance and diversity of microbial population in vitro. J Dairy Sci. 96:1782-1792.

Philippeau C, Lettat A, Martin C, Silberberg M, Morgavi DP, Ferlay A, Berger C, Noziere P. 2017. Effect of bacterial direct-fed microbials on ruminal characteristics, methane emissions, and milk fatty acid composition in cows fed high-or-starch diets. J Dairy Sci. 100:2637-2650.

Pikoli MR, Zadfa FM, Sugoro I. 2017. Bakteri denitrifikasi inaktif sebagai suplemen untuk mengurangi gas metana dari cairan rumen sapi. J Ilmiah Aplikasi Isotop dan Radiasi. 13:69-78.

Ramírez-Restrepo CA, Tan C, O’Neill CJ, López-Villalobos N, Padmanabha J, Wang J, McSweeney CS. 2016. Methane production, fermentation characteristics, and microbial profiles in the rumen of tropical cattle fed tea seed saponin supplementation. Anim Feed Sci nd Technology. 216: 58-67.

Romero T, Perez-Baena I, Lasen T, Gomis-Tena J, Loor JJ, Fernandez C. 2020. Inclusion of lemon leaves and rice straw into compound feed and its effect on nutrient balance, milk yield, and methane emissions in dairy goats. J Dairy Sci. 103:6178-6189.

Sejian, V, R Lal, J Lakritz, T Ezeji. 2011. Measurement and Prediction of Enteric Methane Emission. International J Biometeorol. 55: 1-16. https://dx.doi.org/10.1007/s00484-010-0356-7

Singh, AS, P Kaur. 2020. Effect of Saponins Mitigation of Methane – A Review. Int J Curr Microbiol App Sci. 9:3310-3324.

Steen, WW, N Gay, J Boling, N Bradley, J McCormick, L Pendlum. 1978. Effect of monensin on performance and plasma metabolites in growing-finishing steers. J. Anim. Sci. 46:350–355. doi:10.2527/jas1978.462350x

Szczechowiak J, Szumacher-Strabel M, Stochmal A, Nadolna M, Pers-Kamczyc E, Nowak A, Cieślak A. 2013. Effect of Saponaria officinalis L. Or Panax ginseng CA Meyer Triterpenoid Saponins on Ruminal Fermentation in Vitro/Wpływ Saponin Triterpenowych Saponaria Officinalis L. Lub Panax Ginseng CA Meyer Na Przemiany Zachodzące W Żwaczu W Warunkach In Vitro. Annals Anim Sci. 13: 815-27.

Thalib A, Widiawati Y. 2008. Efek pemberian bakteri Acetoanaerobium noterae terhadap performans dan produksi gas metana pada ternak domba. JITV. 13:273-278.

Thalib A, Widiawati Y, Haryanto B. 2010. Penggunaan complete rumen modifier (CRM) pada ternak domba yang diberi hijauan pakan berserat tinggi. JITV. 15:97-104.

Van Wyngaard JDV, R Meeske, LJ Erasmus. 2018a. Effect of dietary nitrate on enteric methane emissions, production performance and rumen fermentation of dairy cows grazing kikuyu-dominant pasture during summer. J Anim Feed Sci Tech. 244: 76-87.

Van Wyngaard JDV, R Meeske, LJ Erasmus. 2018b. Effect of concentrate feeding level on methane emissions, production performance and rumen fermentation of Jersey cows grazing ryegrass pasture during spring. J Anim Feed Sci Tech. 241: 121-132.

Van Wyngaard JDV, R Meeske, LJ Erasmus. 2019. Effect of dietary nitrate on enteric methane emissions, production performance and rumen fermentation of dairy cows grazing ryegrass pasture during spring. J Anim Feed Sci Tech. 252: 64-73.

Vargas JE, Andre S, Ferreras LL, Snelling TJ, Ruiz DRY, Estrada CG, Lopez S. 2020. Dietary supplemental plant oils reduce methanogenesis from anaerobic microbial fermentation in the rumen. Scintific Report. 10:1613. https://doi.org/10.1038/s41598-020-58401-z.

Vyas D, McGeough EJ, McGinn SM, McAllister TA, Beauchemin KA. 2014. Effect pf Propionibacterium spp. on ruminal fermentation, nutrient digestibility, and methane emissions in beef heifers fed a high-forage diet. J Anim Sci. 92:2191-2201. doi:10.2527/jas2013-7492.

Wall DM, Straccialini B, Allen E, Nolan P, Herrmann C, O’Kiely P, Murphy JD. 2015. Investigation of Effect of Particle Size and rumen Fluid Addition on Specific Methane Yields of High Lignocellulose Grass Silage J Elsevier. 192:266-271.

Widiawati Y, Puastuti W. 2016. The effect of condensed tannin and saponin in reducing methane produced during rumen digestion of agricultural byproducts. 2016. Proc Intsem LPVT. p. 139-146.

Widiawati Y, Herliatika A, Zuratih, saptati RA. 2019. Emisi dari Subsektor Peternakan. Dalam: Metode Penilaian Adaptasi dan Inventarisasi Gas Rumah Kaca Sektor Pertanian, F Agus (ed). Jakarta (Id): Badan Penelitian dan Pengembangan Pertanian.

Yulistiani D, Puastuti W, Haryanto B. Purnomoadi A, Kurihara M, Thalib A. 2017. Complete rumen modifier suplementation in corn cob silage basal diet of lamb reduces methane emission. Indonesian J Agricult Sci. 18:33-42.

Yusriani Y, Elviwirda, Sabri M. 2015. Kajian pemanfaatan limbah jerami sebagai pakan ternak sapi di Provinsi Aceh. Jurnal Peternakan Indonesia. 17:1907-1760

Refbacks

  • There are currently no refbacks.

Copyright (c)  2021 WARTAZOA. Indonesian Bulletin of Animal and Veterinary Sciences

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.