The Role of Catechin Compound and Its Derivates to Mitigate Methane Gas Production in the Rumen Fermentation

Mozart Nuzul Aprilliza AM, Y N Anggraeny, E Wina


Enteric fermentation and its corresponding to methane emissions take place in many wild and domestic ruminant species, such as deer, buffalo, cattle, goats, sheep. Ruminant animals are different from other animals in that they have a rumen, a large fore-stomach with a complex microbial environment. A resulting of this process is methane (CH4), which has a global warming potential (25 times that of carbon dioxide (CO2)). Because the digestion process is not 100% efficient, some of the energy intake is lost in the form of methane. Recently, natural plant products, such as tea leaves which are often inexpensive and environmentally safe have been introduced in methane mitigation strategies. Tea leaves have potential for use as an additives in ruminant diets. The adding of catechin 10-40 g/Kg DM were able to declined methane emission 7.4–13.5%. Furthermore, catechin could decrease the methane production. Catechin decreased CH4 production both in vitro and in vivo. Catechin causes direct inhibition of methanogens as well as may act as hydrogen sinks during degradation by rumen microbes via cleavage of ring structures and reductive dehydroxylation reactions. The objective of this paper is to review existing knowledge related to discuss how catechins can act as methane-lowering agents from rumen fermentation on ruminants.


Enteric fermentation; natural feed additives; cathecins; methane reduction

Full Text:



Aemiroa A, Hanada M, Umetsua K, Nishida T. 2016. The effect of Sunphenon 30S-O on methane emission, nutrient intake, digestibility and rumen fermentation. Anim Feed Sci Technol. 214: 34-43.

Anggraini T, Tai T, Yoshino T. 2011, “Antioxidative Activity and Catechin Content of Four Kinds of Uncaria gambier Extracts from West Sumatra, Indonesia. Afr J Biochem Res. 5: 33-38.

Balcells J, Aris A, Serrano A, Seradj AR, Crespo J, Devant M. 2013. Effects of an extract of plant flavonoids (Bioflavex) on rumen fermentation and performance in heifers fed high-concentrate diets. J Anim Sci. 90:4975-4984.

Becker PM, Wikselaar PG, Franssen MCR, Vos RCH, Hall RD. Beekwilder J. 2013. Evidence for a hydrogen-sink mechanism of (+) catechin-mediated emission reduction of the ruminant greenhouse gas methane. Metabolomics. 10: 179-189.

Busquet M, Calsamiglia S, Ferret A, Kamel C. 2006. Plant extract affect in vitro rumen microbial fermentation. J Dairy Sci. 89:761-771.

Connor, K.A, Amidon G.L., Stell, VJ. 1992, “Stabilitas kimiawi sediaan farmasi,”ed II translated by Gunawan D. IKIP Semarang Press, Semarang, pp.416-422.

Deppenmier U, Muller V. 2008. Bioenergetics. Energy conservation and conversion. In G. Schafer and H. Penefsky (Eds), Series; Results and problems in cell differentiation. 45:123. Heidelberg: Springer.

Direktort Jenderal Perkebunan. 2020. Statitik Perkebunan Indonesia 2018 – 2020 (Teh). Jakarta, Indonesia.

Graham HN. 1992. Green tea composition, consumnption, and polyphenol chemistry. Preventive Medicine. 21:334-350.

Ho CT, Chen CW, Wnasundara UN, Shahidi F. 1997. Naturan antioxidant from tea. AOCS Press. 213-223.

Isnawati A, Raini M, Sampurno OD, Mutiatikum D, Widowati L, Gitawati R. 2014. Karakterisasi tiga jenis ekstrak gambir (Uncaria gambir Roxb) dari Sumatera Barat. Buletin Penelitian Kesehatan. 4:201-208.

Isnawati A. Analisa kualitatif dan kuantitatif senyawa katekin dan kuersetin pada 3 kualitas mutu ekstrak gambir. 2009. Laporan Penelitian. Jakarta: Pusat Penelitian dan Pengembangan Biomedis dan Farmasi, Badan Litbang Kesehatan.

Jagetia GC, Venkatesha VA, Reddy TK. 2000, “Naringin, a Citrus Flavonone, Protects Against Radiation-Induced Chromosome Damage in Mouse Bone Marrow,” Mutagenesis. 18:337-343.

Lassey KR. 2008. Livestock methane emission and its perspective in the global methane cycle. Australian J Experiment Agricul. 48:114-118.

Lloyd D, Williams AG, Amann R, Hayes AJ, Durrant L, Ralphs JR. 1996. Intracellular prokaryotes in rume ciliate protozoa: Detection by confocal laser scanning microscopy after in situ hybridization with fluorescent 16S rRNA probes. Eur J Prostisol. 47:95-99

Min BR, Barry TN, Attwood GT, McNabb WC. 2003. The effect of condensed tannins on the nutrition and health of ruminants fed fresh temperate forage: a review. Anim Feed Sci Technol. 106: 3-19.

Mitrowihardjo S. 2012. Kandungan katekin dan hasil pucuk beberapa klon teh (Camelia sinensis (L.) O. Kuntze) unggulan pada ketinggian yang berbeda di kebun Pagilaran. Disertasi Program Studi Pemuliaan Tanaman. Fakultas Pertanian UGM. Yogyakarta.

Mueller HI. 2006. Review unrvelling the conundrum of tannins in animal nutrition and health. J Sci Food Agricul. 86:2010-2037.

Muller M. 1993. Review article: The hydrogenosome. Microbial. 139:2879-2889.

Nasution AH, Asmarantaka RW, Baga LM. 2016. Efisiensi pemasaran gambir di Kabupaten Lima Puluh Kota, Sumatera Barat. Buletin Ilmiah Litbang Perdagangan. 9:221-239.

Oskoueian E, Abdullah N, Oskouiean A. 2013. Effects of flavonoids rumen fermentation activity, methane production, and microbial population. Biomed Res Inter. 2013:1-8.

Pambayun R, Murdijati G, Slamet S, Kapti R. 2007. Kandungan Fenol dan Sifat Antibakteri dari Berbagai Jenis Ekstrak Produk Gambir (Uncaria gambir Roxb), Majalah Farmasi Indonesia. 18:141-146.

Patra AK, Saxena J. 2010. A new perspective on the use of plant secondary metabolites to inhibitmethanogenesis in the rumen. Phytochemistry. 71:1198-1222.

Payne MJ, Hurst WJ, Kenneth BM, Rank C, Stuart DA. 2010. Impact of Fermentation, Drying, Roasting, and Dutch Processing on Epicatechin and Catechin Content of Cacao Beans and Cocoa Ingredients. J Agric Food Chem. 58:10518–10527.

Ramdani D, Chaudhry AS, Seal CJ. 2013. Chemical composition, plant secondary metabolites, and minerals of green and black teas and the effect of different tea-to-water ratios during their extraction on the composition of their spent leaves as potential additives for ruminants. J Agric Food Chemistry. 61: 4961-4967.

Ramdani D, Chaudry AS, Seal CJ. 2017. Alkaloid and polyphenol analysis by HPLC in green and black tea powders and their potential use as additive in ruminant diets. The 1st International Conference and Exhibition on Powder Technology Indonesia (ICePTi). AIP Conf. Proc. 1927:030008-030008. AIP Publishing.

Safi NEE, Ghidouche S, Ducrot PH. 2007, “Flavonoids: Hemisynthesis, Reactivity, Characterization and Free Radical Scavenging Activity”. Review Molecules. 12: 2228-2258.

Seradj AR, Abecia L, Crespo J, Villalba D, Fondevila M, Balcells J. 2014. The effect of Biolavex® and its pure flavonoid components on in vitro fermentation parameters and methane production in rumen fluid from steers given high concentrate diets. Anim Feed Sci Technol. 197:85-91.

Sinz S, Marquardt S, Soliva CR, Braun U, Liesegang A, Kreuzer M. 2019. Phenolic plant extracts are additive in their effects against in vitro ruminal methane andammonia formation. Asian-Australian J Anim Sci. 32:966-976.

Smith AH, Zoetandal E, Mackie IR. 2005. Bacterial mechanisms to overcome inhibitory effects of dietary tannins. Microbial Ecology. 50:197-205.

Sudjatini. 2017. Optimasi ekstraksi dan penentuan kandungan katekin dalam the hijau (Camellia sinensis) menggunakan metoda HPLC. Agrotech: Jurnal Imiah Teknologi Pertanian. 2:43-49.

Sugihara N, Ohnishi M, Imamura M, Furuno K. 2001 Differences in Antioxidative Efficiency of Catechins in Various Metal-Induced Lipid Peroxidations in Cultured Hepatocytes. J Health Sci. 47: 99-106.

Towaha J. 2013. Kandungan senyawa kimia pada daun teh (Camellia sinensis). Warta Penelitian dan Pengembangan Tanaman Industri. 19: 12-16.

Ungerfeld EM, Kohn RA, Wallace RJ, Newbold CJ. 2007. A meta analysis of fumarate effects on methane production in ruminal batch cultures. J Anim Sci. 85: 2556-2563.

Ungerfeld EM. 2018. Inhibition of rumen methanogenesis and ruminant productivity: A Meta-Analysis. Frontiers in veterinary Sci. 5: 1-13.

US EPA. 2012. Global anthropogenic non-CO2 grrenhouse gas emissions, 1990-2023. EPA Report 430-R-12-006. Washington, DC: Office of Atmospheric Programs, Climate Change Division, US. environmental Protection Agency.

Vogels GD, Hoppe WF, Stumm CK. 1980. Association of methanogenic bacteria with rumen ciliates. App. Environ Microbiol. 40: 608–612.

Voravuthikunchai S, Lortheeranuwat A, Jeeju W, Sririrak T, Phongpaichit S, Supawita T. 2004. Effective medical plants against enterohaemorrhagic Eschericia coli O157:H7. J Ethnopharmol. 94:49-54.

Wein S, Bayer B, Gohlke A, Blank R, Metges CC, Wollfram S. 2016. Systemic absorption after intraruminal or intraduodenal application of a green tea extract in cows. PLoS ONE. 11:1-17.

Williams SN, Pickwell GV, Quattrochi LC. 2003. A combination of tea (Camelia Sinensis) Catechins in Required for Optimal Inhibition of Induced CYP1A Expression by Green Tea Extract. J Agric Food. Chem. 51:6627-6634.

Wrede C, Dreier A, Kokoschka S, Hoppert M. 2012. Archaea in symbioses. Archaea. 2012:596846.

Yeni G, Syamsu K, Mardliyati E, Muchta H. 2017. Penentuan teknologi proses pembuatan Gambir murni dan katekin terstandar dari Gambir Asalan. Jurnal Litbang Industri. 7:1-10.

Zhen YS, Chen ZM, Cheng SJ, Chen ML. 2002. Tea bioactivity and therapeutic potential. Taylor & Francis, London.


  • There are currently no refbacks.

Copyright (c)  2021 WARTAZOA. Indonesian Bulletin of Animal and Veterinary Sciences

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.