Chlorella vulgaris and Spirulina platensis: Their Nutrient Contents and Bioactive Compounds for Improving Poultry Productivity

Sugiharto Sugiharto


Poultry industry are facing many challenges and osbtacles especially on the supply of feed ingredients, medicines, feed supplements and additives. The high price of protein source-feed ingredients has encouraged nutritionists to explore and utilize alternative protein source-feed ingredients for poultry. This review provides an overview of their nutritional and bioactive contents and the use of microalgae, Chlorella vulgaris and Spirulina platensis in poultry feed based on recent literature studies and their potential development and utilization in Indonesia. The microalgae Chlorella vulgaris dan Spirulina platensis have very high protein content that are potential as a protein source in poultry rations. In addition, Chlorella vulgaris and Spirulina platensis also contain several bioactive compounds that can be used as alternatives to antibiotics growth promoter and synthetic antioxidants for poultry. Indonesia has a great potential for the production of Chlorella vulgaris and Spirulina platensis, however massive cultivation and economies of scale have not yet been carried out. Such conditions make Chlorella vulgaris and Spirulina platensis less profitable as protein sources, but more likely as growth-promoting additives or antioxidants for poultry in Indonesia.


Chlorella vulgaris; Spirulina platensis; alternative antibiotic; antioxidant; poultry

Full Text:



Al-Dhabi NA. 2013. Heavy metal analysis in commercial Spirulina products for human consumption. Saudi J Biol Sci. 20:383-388.

Abdelnour SA, El-Hack MEA, Arif IM, Khafaga AF, Taha AE. 2019. The application of the microalgae Chlorella spp. as a supplement in broiler feed. World’s Poult Sci J. 75: 305-318.

An B-K, Kim K-E, Jeon J-Y, Lee KW. 2016. Effect of dried Chlorella vulgaris and Chlorella growth factor on growth performance, meat qualities and humoral immune responses in broiler chickens. SpringerPlus. 5:718.

Andrade LM, Andrade CJ, Dias M, Nascimento CAO, Mendes MA. 2018. Chlorella and spirulina microalgae as sources of functional foods, nutraceuticals, and food supplements; an overview. MOJ Food Process Technol. 6:45-58.

Balaji MH. 2013. Spirulina-small but a spectacular species. Int J Drug Dev Res. 5:76-82.

Barkia I, Saari N, Manning SR. 2019. Microalgae for high-value products towards human health and nutrition. Marine Drugs. 17:304.

Bellof G, Alarcón SC. 2013. Effect of Spirulina platensis in organic broiler production. Arch Geflügelk. 77:73-80.

Bertoldi FC, Sant'Anna E, Oliveira JLB. 2008. Chlorophyll content and minerals profile in the microalgae Chlorella vulgaris cultivated in hydroponic wastewater. Ciênc Rur Santa Maria. 38:54-58.

Bhalamurugan GL, Valerie O, Mark L. 2018. Valuable bioproducts obtained from microalgal biomass and their commercial applications: A review. Environ Eng Res. 23:229-241.

Boiago MM, Dilkin JD, Kolm MA, Barreta M, Souza CF, Baldissera MD, dos Santos ID, Wagner R, Tavernari FC, da Silva MLB, Zampar A, Stivanin TE, Da Silva AS. 2019. Spirulina platensis in Japanese quail feeding alters fatty acid profiles and improves egg quality: Benefits to consumers. J Food Biochem. 43:e12860.

Bold HC, Wynne MJ. 1985. Introduction to the Algae. Structure and Reproduction. Englewood Cliffs. New Jersey, Prentice-Hall.

Bonos E, Kasapidou E, Kargopoulos A, Karampampas A, Christaki E, Florou-Paneri P, Nikolakakis I. 2016. Spirulina as a functional ingredient in broiler chicken diets. S Afr J Anim Sci. 46:94-102.

Brzychczyk , Kowalczyk Z, Gielzecki J. 2016. Evaluation of usefulness of the designed laboratory photobioreactor for microalgae cultivation in controlled conditions. Agric Engineering 20(1): 13-22

Choi H, Jung SK, Kim JS, Oh KB, Lee P-Y, Byun SJ. 2017. Effects of dietary recombinant chlorella supplementation on growth performance, meat quality, blood characteristics, excreta microflora, and nutrient digestibility in broilers. Poult Sci. 96:710‐716.

Christwardana M, Nur MMA, Hadiyanto. 2013. Spirulina platensis: potensinya sebagai bahan pangan fungsional. Jurnal Aplikasi Teknologi Pangan. 2:1-4.

Costa JAV, de Morais MG. 2014. Chapter 1 - An Open Pond System for Microalgal Cultivation. In Biofuels from Algae. p. 1-22.

El-Abd NM, Hamouda RAE. 2017. Improved productivity and health of broiler chicken by micro green alga Chlorella vulgaris. Asian J Poult Sci. 11:57-63.

El-Bahr S, Shousha S, Shehab A, Khattab W, Ahmed-Farid O, Sabike I, El-Garhy O, Albokhadaim I, Albosadah K. 2020. Effect of dietary microalgae on growth performance, profiles of amino and fatty acids, antioxidant status, and meat quality of broiler chickens. Animals. 10:E761.

Elhady AA, El-Ghalid OAH. 2018. Spirulina platensis algae (SPA): A novel poultry feed additive Effect of SPA supplementation in broiler chicken diets on productive performance, lipid profile and calcium-phosphorus metabolism. VI Mediterranean Poultry Summit 18-20 June 2018, Torino, Italy.

El-Sayed AEB, El-Sheekh MM. 2018. Outdoor cultivation of Spirulina platensis for mass production. Not Sci Biol. 10:38-44.

Evans AM, Smith DL, Moritz JS. 2015. Effects of algae incorporation into broiler starter diet formulations on nutrient digestibility and 3 to 21 d bird performance. J Appl Poult Res. 24:206-214.

Falquet J. 1997. The nutritional aspects of spirulina, antenna technologies. (accessed July 27, 2020).

Fathi MA, Namra MMM, Ragab MS, Aly MMM. 2018 Effect of dietary supplementation of algae meal (Spirulina platensis) as growth promoter on performance of broiler chickens. Egypt Poult Sci. 38:375-389.

Gupta S, Gupta C, Prakash D (2017) Prebiotic efficiency of blue green algae on probiotics microorganisms. J Microbiol Exp. 4:00120.

Gutiérrez-Salmeán G, Fabila-Castillo L, Chamorro-Cevallos G. 2015. Nutritional and toxicological aspects of Spirulina (Arthrospira). Nutr Hosp. 32:34-40.

Gutiérrez-Salmeán G, Fabila-Castillo L, Chamorro-Cevallos G. 2015. Nutritional and toxicological aspects of Spirulina (Arthrospira). Nutr Hosp. 32:34-40.

Habib MAB, Parvin M, Huntington T, Hasan MR. 2008. A reivew on culture, production and use of spirulina as food for humans and feeds for domestic animals and fish. FAO Fisheries and Agricultural Circular 1034, FAO, Rome, Italy. 33pp.

Hajati H, Zaghari M, Oliveira HC. 2020. Arthrospira (Spirulina) platensis can be considered as a probiotic alternative to reduce heat stress in laying japanese quails. Braz J Poult Scie. 22:1-8.

Hajati H, Zaghari M. 2019. Effects of Spirulina platensis on growth performance, carcass characteristics, egg traits and immunity response of japanese quails. Iran J Appl Anim Scie. 9:347-357.

Han G, Yang H, Wang Y, Haraguchi S, Miyazaki T, Bungo T, Tashiro K, Furuse M, Chowdhury VS. 2019. L-Leucine increases the daily body temperature and affords thermotolerance in broiler chicks. Asian-Australas J Anim Sci. 32:842-848.

Jamil ABMR, Akanda R, Rahman M, Hossain A, Islam S. 2015. Prebiotic competence of spirulina on the production performance of broiler chickens. J Adv Vet Anim Res. 2:304-309.

Jiménez C, Cossío BR, Labella D, Niell FX. 2003. The Feasibility of industrial production of Spirulina (Arthrospira) in Southern Spain. Aquaculture. 217:179-190.

Kang HK, Salim HM, Akter N, Kim DW, Kim JH, Bang HT, Kim MJ, Na JC, Hwangbo J, Choi HC, Suh OS. 2013. Effect of various forms of dietary Chlorella supplementation on growth performance, immune characteristics, and intestinal microflora population of broiler chickens. J Appl Poult Res. 22:100-108.

Kent M, Welladsen HM, Mangott A, Li Y. 2015. Nutritional evaluation of australian microalgae as potential human health supplements. PLoS ONE 10:e0118985.

Kumari P, Nehra V, Lather D, Kundu P and Narang G. 2019. Effect of Spirulina on growth and bursal index of infectious bursal disease vaccinated chickens. Haryana Vet. 58:70-72.

Kurniawan D, Christie CDY. 2020. The effect of Morinda citrifolia and Arthrospira plattensis powder on the performance and quality of broiler duck carcasses. JITV. 25:40-44.

Liestianty D, Rodianawati I, Arfah RA, Assa A, Patimah, Sundari, Muliadi. 2019. Nutritional analysis of Spirulina sp to promote as superfood candidate. IOP Conf. Ser.: Mater. Sci. Eng. 509:012031.

Michael A, Kyewalyanga MS, Lugomela CV. 2019. Biomass and nutritive value of Spirulina (Arthrospira fusiformis) cultivated in a cost-effective medium. Annals of Microbiology. 69:1387-1395.

Mirzaie S, Sharifi SD, Zirak-Khattab F. 2020. 9. J Appl Phycol.

Mirzaie S, Zirak-Khattab F, Hosseini SA, Donyaei-Darian H. 2018. Effects of dietary Spirulina on antioxidant status, lipid profile, immune response and performance characteristics of broiler chickens reared under high ambient temperature. Asian Aust J Anim Sci. 31:556-563.

Nege AS, Masithah ED, Khotib J. 2020. Trends in the uses of Spirulina microalga: a mini-review. 12: 149-166.

Niccolaia A, Zittelli GC, Rodolfia L, Biondia N, Tredici MR. 2019. Microalgae of interest as food source: Biochemical composition and digestibility. Algal Res. 42: 101617

Oh ST, Zheng L, Kwon HJ, Choo YK, Lee KW, Kang CW, An BK. 2015. Effects of dietary fermented Chlorella vulgaris (CBT®) on growth performance, relative organ weights, cecal microflora, tibia bone characteristics, and meat qualities in pekin ducks. Asian-Australas J Anim Sci. 28:95-101.

Olubodun JO, Zulkifli I, Farjam AS, Hair-Bejo M, Kasim A. 2015. Glutamine and glutamic acid supplementation enhances performance of broiler chickens under the hot and humid tropical condition. Italian J Anim Sci. 14:3263.

Park JH, Lee SI, Kim IH. 2018. Effect of dietary Spirulina (Arthrospira) platensis on the growth performance, antioxidant enzyme activity, nutrient digestibility, cecal microflora, excreta noxious gas emission, and breast meat quality of broiler chickens. Poult Sci. 97:2451-2459.

Pestana JM, Puerta B, Santos H, Madeira MS, Alfaia CM, Lopes PA, Pinto RMA, Lemos JPC, Fontes CMGA, Lordelo MM, Prates JAM. 2020. Impact of dietary incorporation of Spirulina (Arthrospira platensis) and exogenous enzymes on broiler performance, carcass traits, and meat quality. Poult Sci. 99:2519‐2532.

Purkan P, Nidianti E, Abdulloh A, Safa A, Retnowati W, Soemarjati W, Nurlaila H, Kim SW. 2019. Biodiesel production by lipids from Indonesian strain of microalgae Chlorella vulgaris. Open Chem. 17:919-926.

Rani K, Sandal N, Sahoo PK. 2018. A comprehensive review on chlorella- its composition, health benefits, market and regulatory scenario. Pharma Innovat J. 7:584-589.

Ravishankar GA, Rao R. 2020. Handbook of Algal Technologies and Phytochemicals Volume I Food, Health and Nutraceutical Applications. CRC Press. Boca Raton, FL. 9780429054242

Ru ITK, Sung YY, Jusoh M, Wahid MEA, Nagappan T. 2020. Chlorella vulgaris: a perspective on its potential for combining high biomass with high value bioproducts. Appl Phycol. 1:2-11.

Rubel MdZU, Beg MdAH, Begum M, Patoary MdMU. 2019. Effect of dietary supplement of algae (Spirulina platensis) as an alternative to antibiotics on growth performance and health status of broiler chickens. Int J Poult Sci. 18:576-584.

Safi C, Zebib B, Merah O, Pontalier P, Vaca-Garcia C. 2014. Morphology, composition, production, processing and applications of Chlorella vulgaris: A review. Renew Sustain Energy Rev. 35:265-278.

Sayadi MH, Rashki O, Shahri E. 2019. Application of modified Spirulina platensis and Chlorella vulgaris powder on the adsorption of heavy metals from aqueous solutions. J Environ Chem Eng. 7:103169.

Seghiri R, Kharbach M, Essamri A. 2019. Functional composition, nutritional properties, and biological activities of Moroccan Spirulina microalga. J Food Qual.

Seyidoglu N, Inan S, Aydin C. 2016. A Prominent Superfood: Spirulina platensis. Superfood and Functional Food – In: Shiomi N, Waisundara VY.(eds).The Development of Superfoods and Their Roles as Medicine. Chapter 1.

Shams M, Haji-Aghababa A, Kardani-Esfahani SM, Amini NG. 2017. Industrial production of microalgae Arthrospira (Spirulina) platensis in the Central Iran. Int J Pure App Biosci. 5:31-36.

Shanmugapriya B, Babu SS, Hariharan T, Sivaneswaran S, Anusha MB, Raja PU. 2015. Synergistic effect of Spirulina platensis on performance and gut microbial load of broiler chicks. Indo-Asian J Multidiscipl Res. 1:149-155.

Sharmin F, Sarker NR, Sarker MSK. 2020. Effect of using Moringa oleifera and Spirulina platensis as feed additives on performance, meat composition and oxidative stability and fatty acid profiles in broiler chicken. J Nutr Food Sci. 10:772.

Sharoba AM. 2014. Nutritional value of spirulina and its use in the preparation of some complementary baby food formulas. J Agroaliment Processes Technol. 20:330-350.

Shinde SR, Patil RA, Padghan PV. 2018. Effect of Spirulina supplementation on growth performance of broilers. J Pharmacog Phytochem. 7:3265-3267.

Sotiroudis TG, Sotiroudis GT. Health aspects of Spirulina (Arthrospira) microalga food supplement. J Serb Chem Soc. 78:395-405.

Spolaore P, Joannis-Cassan C, Duran E, Isambert A. 2006. Commercial applications of microalgae. J Biosci Bioeng. 101:87-96.

Sugiharto S, Henckel P, Lauridsen C. 2010. Fatty acids profile of meat, mucosal sIgA concentration and production index of broiler as a response to Chlorella sp. administration in the diet. J Indonesian Trop Anim Agric. 35:172-178.

Sugiharto S, Lauridsen C. 2016. Dietary Chlorella supplementation effect on immune responses and growth performances of broiler chickens exposed to post hatch holding time. Livest Res Rural Dev. 28:7.

Sugiharto S, Yudiarti T, Isroli I, Widiastuti E, Kusumanti E. 2017. Dietary supplementation of probiotics in poultry exposed to heat stress–a review. Ann Anim Sci. 17:591-604.

Sugiharto S, Yudiarti T, Isroli I, Widiastuti E. 2018. Effect of feeding duration of Spirulina platensis on growth performance, haematological parameters, intestinal microbial population and carcass traits of broiler chicks. S Afr J Anim Sci. 48:98-107.

Sugiharto S. 2020. Nutraceutical aspects of microalgae Spirulina and Chlorella on broiler chickens. Livest Res Rural Dev. 32:6.

Ursu AV, Marcati A, Sayd T, Sante-Lhoutellier V, Djelveh G, Michaud P. 2014. Extraction, fractionation and functional properties of proteins from the microalgae Chlorella vulgaris. Biores Technol. 157:134-139.

Vonshak A, Richmond A. 1988. Mass production of the blue-green alga Spirulina: an overview. Biomass. 15:233-247.

Wang S, Khondowe P, Chen S, Yu J, Shu G, Zhu X, Wang L, Gao P, Xi Q, Zhang Y, Jiang Q. 2012. Effects of "Bioactive" amino acids leucine, glutamate, arginine and tryptophan on feed intake and mRNA expression of relative neuropeptides in broiler chicks. J Anim Sci Biotechnol. 3:27.

Widayat, Philia J, Wibisono J. 2018. Cultivation of microalgae Chlorella sp on fresh water and waste water of tofu industry. E3S Web of Conferences 31:04009.

Yanuhar U, Caesar NR, Musa M. 2019. Identification of local isolate of microalgae Chlorella vulgaris using ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL) gene. IOP Conf Ser Mater Sci Eng. 546:022038.

Yulita E. 2015. Subtitusi Chlorella vulgaris hasil isolasi dari limbah cair industri karet sebagai pakan ikan nila (Oreochromis niloticus). Jurnal Dinamika Penelitian Industri. 26:131-138.

Yusuf MS, Hassan MA, Abdel-Daim MM, El Nabtiti AS, Ahmed AM, Moawed SA, El-Sayed AK, Cui H. 2016. Value added by Spirulina platensis in two different diets on growth performance, gut microbiota, and meat quality of Japanese quails. Vet World. 9:1287-1293.

Zeweil H, Abaza IM, Zahran SM, Ahmed MH, AboulEla HM, Saad AA. 2016. Effect of Spirulina platensis as dietary supplement on some biological traits for chickens under heat stress condition. Asian J Biomed Pharm Sci. 6:8-12.

Ziar-Larimi A, Rezaei M, Chashnidel Y, Zarei-Darki B, Farhadi A. 2018. Effect of different levels of Chlorella vulgaris microalgae extract on performance in heat-stressed broilers. Res Anim Prod. 8:20-29.


  • There are currently no refbacks.

Copyright (c)  2020 WARTAZOA. Indonesian Bulletin of Animal and Veterinary Sciences

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.