Synthesis of Zinc Nanoparticles Using Plant Extract for Broiler’s Feed Additive

cecep hidayat


Nanotechnology has been developed in various fields, included animal nutrition. Nanotechnology made the feed ingredient feed aditive and supplement in nano size, to expand the surface of the material, hence, its biological function in metabolic processes will be enhanced in the animal body. This paper will discuss the production of nanoparticle Zinc (Zn) by green synthesis method using phytogenic compounds from plant extracts as bioreductor and biostabilizer. The nano-Zn product is added into poultry diet as feed additive. The nanoparticle of Zn increased Zn bioavailability in broiler diet. Its utilization in lower doses is more efficient compared to conventional forms. The use of nanoparticle Zn has positive effect in improving growth performance and immunity status. The doses of nano Zn is 20-90 mg/kg, lower than the dose of non-nanoparticle form of Zn (40-120 mg/kg). Low doses will reduce production costs and decrease the amount of excreted Zn, which will reduce pollution to the environment. Zn nanoparticles are also reported to have antibacterial and antioxidant functions which will improve health performance of broilers.


Nanoparticle, Zn, plant extract, feed additive, broiler

Full Text:



Adams LK, Lyon DY, Alvarez PJJ. 2006. Comparative eco-toxicity of nanoscale TiO 2 , SiO 2, and ZnO water suspensions. Water Res. 40:3527-3532.

Afanas’ev I. 2010. Signaling by reactive oxygen and nitrogen species in skin diseases. Curr Drug Metab. 11:409-414.

Ahmadi F, Ebrahimnezjad Y, Ghalehkandi JG, Sis NM. 2014. The effect of dietary zinc oxide nanoparticles on the antioxidant state and serum enzymes activity in broiler chickens during starter stage. In: International Conference on Biological, Civil and Environmental Engineering. Dubai (UAE): IICBE. p. 26-28.

Ahmed S, Ahmad M, Swami BL, Ikram S. 2016. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. J Adv Res. 7:17-28.

Arabi F, Imandar M, Negahdary M, Imandar M, Noughabi MT, Akbari-dastjerdi H. 2012. Investigation anti-bacterial effect of zinc oxide nanoparticles upon life of Listeria monocytogenes. Ann Biol Res. 3:3679-3685.

Bansal V, Rautaray D, Ahmad A, Sastry M. 2004. Biosynthesis of zirconia nanoparticles using the fungus Fusarium oxysporum. J Mater Chem. 14:3303-3305.

Biswas B, Rogers K, McLaughlin F, Daniels D, Yadav A. 2013. Antimicrobial activities of leaf extracts of guava (Psidium guajava L) on two Gram-negative and Gram-positive bacteria. Int J Microbiol. 2013:1-7.

Bunglavan SJ, Garg AK, Dass RS, Shrivastava S. 2014. Use of nanoparticles as feed additives to improve digestion and absorption in livestock. Livest Res Int. 2:36-47.

Buzea C, Blandino IIP, Robbie K. 2007. Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases. 2:MR17-MR71.

Chand N, Naz S, Khan A, Khan S, Khan RU. 2014. Performance traits and immune response of broiler chicks treated with zinc and ascorbic acid supplementation during cyclic heat stress. Int J Biometeorol. 58:2153-2157.

Cheeke PR. 2000. Actual and potential applications of Yucca schidigera and Quillaja saponaria saponins in human and animal nutrition. In: Oleszek W, Marston A, editors. Saponins in Food, Feedstuffs and Medicinal Plants. Proceedings of the Phythochemical Society of Europe. Dordrecht (Netherlands): Springer. p. 241-254.

Chen Z, Meng H, Xing G, Chen C, Zhao Y. 2007. Toxicological and biological effects of nanomaterials. Int J Nanotechnol. 4:79-96.

Chirag PJ, Tyagi S, Halligudi N, Yadav J, Pathak S, Singh SP, Pandey A, Kamboj DS, Shankar P. 2013. Antioxidant activity of herbal plants: A recent review. J Drug Discov Ther. 1:1-8.

Domingues CHDEF, Sgavioli S, Praes MFFM, Castiblanco DMC, Marchizeli PCA, Pereira AA, Duarte KF, Junqueira OM. 2014. Use of nicarbazin, salinomycin and zinc oxide as alternative molting methods for commercial laying hens. Brazilian J Poult Sci. 16:25-30.

Dwivedi A, Gopal K. 2010. Biosynthesis of silver and gold nanoparticles using Chenopodium album leaf extract. Colloids Surfaces A Physicochem Eng Asp. 369:27-33.

El-Gendi GM, Samak HR, Mohamed AA. 2009. Effect of induced molting on some productive and physiological traits in hy-line hens. Egypt Poult Sci. 29:385-405.

El-Sayed MR, Doaa I, El-Sayed BM. 2013. Effect of supplementation of broiler diets with guava leaves and/or olive oil on growth, meat composition, blood metabolites and immune response. Benha Vet Med J. 25:32-32.

Ezzati MS, Bozorgmehrifard MH, Bijanzad P, Rasoulinezhad S, Moomivand H, Faramarzi S, Ghaedi A, Ghabel H, Stabraghi E. 2013. Effects of different levels of zinc supplementation on broilers performance and immunity response to Newcastle disease vaccine. Euro J Exp Bio. 3:497-501.

Feng M, Wang ZS, Zhou AG, Ai DW. 2009. The effects of different sizes of nanometer zinc oxide on the proliferation and cell integrity of mice duodenum-epithelial cells in primary culture. Pak J Nutr. 8:1164-1166.

Gangadoo S, Stanley D, Hughes RJ, Moore RJ, Chapman J. 2016. Nanoparticles in feed: Progress and prospects in poultry research. Trends Food Sci Technol. 58:115-126.

Gardea-Torresdey JL, Parsons JG, Gomez E, Peralta-Videa J, Troiani HE, Santiago P, Yacaman MJ. 2002. Formation and growth of Au nanoparticles inside live alfalfa plants. Nano Lett. 2:397-401.

Geidam YA, Ambali AG, Onyeyili PA, Tijjani MB, Gambo HI, Gulani IA. 2015. Antibacterial efficacy of ethyl acetate fraction of Psidium guajava leaf aqueous extract on experimental Escherichia coli (O78) infection in chickens. Vet World. 8:358-362.

Gerloff K, Albrecht C, Boots AW, Frster I, Schins RPF. 2009. Cytotoxicity and oxidative DNA damage by nanoparticles in human intestinal Caco-2 cells. Nanotoxicology. 3:355-364.

Gonçalves FA, Andrade Neto M, Bezerra JNS, Macrae A, De Sousa OV, Fonteles-Filho AA, Vieira RHSDF. 2008. Antibacterial activity of guava, Psidium guajava Linnaeus, leaf extracts on diarrhea-causing enteric bacteria isolated from seabob shrimp, Xiphopenaeus kroyeri (Heller). Rev Inst Med Trop Sao Paulo. 50:11-15.

Haida KS, Baron A, Haida KS. 2011. Phenolic compounds and antioxidant activity of two varieties of guava and rue. Rev Bras Ciênc Saúde. 28:11-19.

Hashemi SR, Zulkifli I, Bejo MH, Farida A, Somchit MN. 2008. Acute toxicity study and phytochemical screening of selected herbal aqueous extract in broiler chickens. Int J Pharmacol. 4:352-360.

Heinlaan M, Ivask A, Blinova I, Dubourguier HC, Kahru A. 2008. Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere. 71:1308-1316.

Hidayat C, Sumiati, Iskandar S. 2014. Respon pertumbuhan ayam lokal Sentul G-3 terhadap ransum berkadar dedak tinggi yang diberi suplementasi enzim fitase dan ZnO. JITV. 19:193-202.

Hidayat C, Sumiati, Iskandar S. 2015. Persentase bobot karkas dan potongan komersial ayam Sentul-G3 yang diberi ransum mengandung dedak tinggi dengan suplementasi fitase dan ZnO. J Ilmu Pertanian Indonesia. 20:131-140.

Hoet PHM, Brüske-Hohlfeld I, Salata OV. 2004. Nanoparticles - Known and unknown health risks. J Nanobiotechnol. 2:12-27.

Hosseini-Mansoub N, Chekani-Azar S, Tehrani AA, Lotfi A, Manesh MK. 2010. Influence of dietary vitamin E and zinc on performance, oxidative stability and some blood measures of broiler chickens reared under heat stress (35°C). J Agrobiol. 27:103-110.

Ibrahim D, Ali HA, El-Mandrawy SAM. 2017. Effects of different zinc sources on performance, bio distribution of minerals and expression of genes related to metabolism of broiler chickens. Zagazig Vet J. 45:292-304.

Iravani S. 2011. Green synthesis of metal nanoparticles using plants. Green Chem. 13:2638-2650.

Jahanian R, Moghaddam HN, Rezaei A. 2008. Improved broiler chick performance by dietary supplementation of organic zinc sources. Asian-Australasian J Anim Sci. 21:1348-1354.

Jain D, Kumar Daima H, Kachhwaha S, Kothari SL. 2009. Synthesis of plant-mediated silver nanoparticles using papaya fruit extract and evaluation of their antimicrobial activities. Dig J Nanomater Biostructures. 4:557-563.

Jin T, Sun D, Su JY, Zhang H, Sue HJ. 2009. Antimicrobial efficacy of zinc oxide quantum dots against Listeria monocytogenes, Salmonella Enteritidis, and Escherichia coli O157:H7. J Food Sci. 74:M46-M52.

Khan RU, Nikousefat Z, Javadani M, Tufarelli V, Laudadio V. 2011. Zinc induced molting: Production and physiology. Worlds Poult Sci J. 67:497-506.

Khan RU, Rahman Z, Javed I, Muhammad F. 2013. Supplementation of vitamins, probioitics and proteins on oxidative stress, enzymes and hormones in post-moult male broiler breeders. Arch Tierzucht. 61:607-613.

Kompiang IP. 2009. Pemanfaatan mikroorganisme sebagai probiotik untuk meningkatkan produksi ternak unggas di Indonesia. J Pengembangan Inovasi Pertanian. 2:177-191.

Kulkarni RC, Mandal AB, Bhanja SK, Goel A, Mehera M. 2017. Dietary zinc supplementation on immune response of coloured broilers during hot-humid summer. J Poult Sci Technol. 5:18-21.

Kurnia F, Suhardiman M, Stephani L, Purwadaria T. 2012. Peranan nano-mineral sebagai bahan imbuhan pakan untuk meningkatkan produktivitas dan kualitas produk ternak. Wartazoa. 22:187-193.

Lagana C, Ribeiro AML, Kessler AM, Kratz LR, Pinheiro CC. 2007. Effect of the supplementation of vitamins and organic minerals on the performance of broilers under heat stress. Brazilian J Poult Sci. 9:39-43.

Lai PW, Liang JB, Hsia LC, Loh TC, Ho YW. 2010. Effects of varying dietary zinc levels and environmental temperatures on the growth performance, feathering score and feather mineral concentrations of broiler chicks. Asian-Australasian J Anim Sci. 23:937-945.

Lee HJ, Lee G, Jang NR, Yun JH, Song JY, Kim BS. 2011. Biological synthesis of copper nanoparticles using plant extract. Nanotechnology. 1:371-374.

Li X, He G, Xiao G, Liu H, Wang M. 2009. Synthesis and morphology control of ZnO nanostructures in microemulsions. J Colloid Interface Sci. 333:465-473.

Liao CD, Hung WL, Jan KC, Yeh AI, Ho CT, Hwang LS. 2010. Nano/sub-microsized lignan glycosides from sesame meal exhibit higher transport and absorption efficiency in Caco-2 cell monolayer. Food Chem. 119:896-902.

Lina T, Jianyang J, Fenghua Z, Huiying R, Wenli L. 2009. Effect of nano-zinc oxide on the production and dressing performance of broiler. Chinese Agric Sci Bull. 2.

Liu Y, He L, Mustapha A, Li H, Hu ZQ, Lin M. 2009. Antimicrobial activities of zinc oxide nanoparticles against Escherichia coli O157:H7. J Appl Microbiol. 107:1193-1201.

Maertens L, Štruklec M. 2006. Technical note: Preliminary results with a tannin extract on the performance and mortality of growing rabbits in an enteropathy infected environment. World Rabbit Sci. 14:189-192.

Mahmoud UT. 2012. Silver nanoparticles in poultry production. J Adv Vet Res. 2:303-306.

Mapatac LC. 2017. Potency of medicinal leaves in the growth performance of broiler chicks. Recoletos Multidiscip Res J. 3:197-206.

Masakke Y, Sulfikar, Muhaedah R. 2015. Biosynthesis of silver nanoparticles using methanol extract of mangosteen leaves (Garcinia mangostana L). J Sainsmat. 4:28-41.

Meyers MA, Mishra A, Benson DJ. 2006. Mechanical properties of nanocrystalline materials. Prog Mater Sci. 51:427-556.

Mittal AK, Chisti Y, Banerjee UC. 2013. Synthesis of metallic nanoparticles using plant extracts. Biotechnol Adv. 31:346-356.

Mohammadi V, Ghazanfari S, Mohammadi-Sangcheshmeh A, Nazaran MH. 2015. Comparative effects of zinc-nano complexes, zinc-sulphate and zinc-methionine on performance in broiler chickens. Br Poult Sci. 56:486-93.

Mohanpuria P, Rana NK, Yadav SK. 2008. Biosynthesis of nanoparticles: Technological concepts and future applications. J Nanoparticle Res. 10:507-517.

Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Parishcha R, Ajaykumar PV., Alam M, Kumar R, Sastry M. 2001. Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: A novel biological approach to nanoparticle synthesis. Nano Lett. 1:515-519.

Mukunthan KS, Balaji S. 2012. Cashew apple juice (Anacardium occidentale L) speeds up the synthesis of silver nanoparticles. Int J Green Nanotechnol Biomed. 4:71-79.

Naz S, Idris M, Khalique M, Alhidary I, Abdelrahman M, Khan R, Chand N, Farooq U, Ahmad S. 2016. The activity and use of zinc in poultry diets. Worlds Poult Sci J. 72:159-167.

Niles BJ, Clegg MS, Hanna LA, Chou SS, Momma TY, Hong H, Keen CL. 2008. Zinc deficiency-induced iron accumulation, a consequence of alterations in iron regulatory protein-binding activity, iron transporters, and iron storage proteins. J Biol Chem. 283:5168-5177.

Nogata Y, Sakamoto K, Shiratsuchi H, Ishii T, Yano M, Ohta H. 2006. Flavonoid composition of fruit tissues of citrus species. Biosci Biotechnol Biochem. 70:178-192.

NRC. 1994. Nutrient requirements of poultry. 9th ed. Washington DC (US): National Academy Press.

Olgun O, Yildiz AÖ. 2017. Effects of dietary supplementation of inorganic, organic or nano zinc forms on performance, eggshell quality, and bone characteristics in laying hens. Ann Anim Sci. 17:463-476.

Padmavathy N, Vijayaraghavan R. 2008. Enhanced bioactivity of ZnO nanoparticles - An antimicrobial study. Sci Technol Adv Mater. 9:1-7.

Pandey A, Shweta. 2011. Antifungal properties of Psidium guajava leaves and fruits against various pathogens. Pharm Biomed Sci J. 13:1-6.

Parashuramulu S, Nagalakshmi D, Rao DS, Kumar MK, Swain PS. 2015. Effect of zinc supplementation on antioxidant status and immune response in buffalo calves. Anim Nutr Feed Technol. 15:179-88.

Pathak SS, Reddy KV, Prasoon S. 2016. Influence of different sources of zinc on growth performance of dual purpose chicken. JBioInnov. 5:663-672.

Piccinno F, Gottschalk F, Seeger S, Nowack B. 2012. Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. J Nanoparticle Res. 14:1109-1120.

Raad II, Hanna HA, Boktour M, Chaiban G, Hachem RY, Dvorak T, Lewis R, Murray BE. 2005. Vancomycin-resistant Enterococcus faecium: Catheter colonization, esp gene, and decreased susceptibility to antibiotics in biofilm. Antimicrob Agents Chemother. 49:5046-5050.

Rahman HU, Qureshi MS, Khan RU. 2014. Influence of dietary zinc on semen traits and seminal plasma antioxidant enzymes and trace minerals of beetal bucks. Reprod Domest Anim. 48:1004-1007.

Rahman Z, Siddiqui MN, Khatun MA, Kamruzzaman M. 2013. Effect of guava (Psidium guajava) leaf meal on production performances and antimicrobial sensitivity in commercial broiler. J Nat Prod. 6:177-187.

Rai M, Yadav A, Gade A. 2008. CRC 675 - Current trends in phytosynthesis of metal nanoparticles. Crit Rev Biotechnol. 28:277-284.

Rajendra R, Balakumar C, Ahammed H, Jayakumar S, Vaideki K, Rajesh E. 2010. Use of zinc oxide nano particles for production of antimicrobial textiles. Int J Eng Sci Technol. 2:202-208.

Rao SVR, Prakash B, Raju MVLN, Panda AK, Kumari RK, Reddy EPK. 2016. Effect of supplementing organic forms of zinc, selenium and chromium on performance, anti-oxidant and immune responses in broiler chicken reared in tropical summer. Biol Trace Elem Res. 172:511-520.

Richards JD, Zhao J, Harreil RJ, Atwell CA, Dibner JJ. 2010. Trace mineral nutrition in poultry and swine. Asian-Australasian J Anim Sci. 23:1527-1534.

Rocha M, Hernandez-Mijares A, Garcia-Malpartida K, Banuls C, Bellod L, Victor VM. 2010. Mitochondria-targeted antioxidant peptides. Curr Pharm Des. 16:3124-3131.

Rosi NL, Mirkin CA. 2005. Nanostructures in biodiagnostics. Chem Rev. 105:1547-1562.

Sahoo A, Swain R, Mishra SK, Jena B. 2014. Serum biochemical indices of broiler birds fed on inorganic, organic and nano zinc supplemented diets. Int J Recent Sci Res. 5:2078-2081.

Sajadi Far S. 2013. Effect of dietary zinc level of zinc on performance and cecal lesion score in broilers infested with Eimeria tenella. Arch Zootech. 16:71-78.

Sathishkumar M, Sneha K, Yun YS. 2010. Immobilization of silver nanoparticles synthesized using Curcuma longa tuber powder and extract on cotton cloth for bactericidal activity. Bioresour Technol. 101:7958-7965.

Schiavone A, Guo K, Tassone S, Gasco L, Hernandez E, Denti R, Zoccarato I. 2008. Effects of a natural extract of chestnut wood on digestibility, performance traits, and nitrogen balance of broiler chicks. Poult Sci. 87:521-527.

Senapati S, Ahmad A, Khan MI, Sastry M, Kumar R. 2005. Extracellular biosynthesis of bimetallic Au-Ag alloy nanoparticles. Small. 1:517-520.

Sepeur S. 2008. Nanotechnology: Technical basics and applications. Hannover (Germany): Vincentz Network.

Shrivastava S, Bera T, Roy A, Singh G, Ramachandrarao P, Dash D. 2007. Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology. 18:1-9.

Siddiqui MH, Al-Whaibi MH, Mohammad F. 2015. Nanotechnology and plant sciences: nanoparticles and their impact on plants. Switzerland: Springer International Publishing.

Sindhura KS, Prasad TNVKV, Selvam PP, Hussain OM. 2014. Synthesis, characterization and evaluation of effect of phytogenic zinc nanoparticles on soil exo-enzymes. Appl Nanosci. 4:819-827.

Sinurat AP, Wina E, Rakhmani SIW, Wardhani T, Haryati T, Purwadaria T. 2018. Bioactive substances of some herbals and their effectiveness as antioxidant, antibacteria and antifungi. JITV. 23:18-27.

Sundaresan NR, Anish D, Sastry KVH, Saxena VK, Nagarajan K, Subramani J, Leo MDM, Shit N, Mohan J, Saxena M, Ahmed KA. 2008. High doses of dietary zinc induce cytokines, chemokines, and apoptosis in reproductive tissues during regression. Cell Tissue Res. 332:543-554.

Sunder GS, Panda AK, Gopinath NCS, Rama Rao SV, Raju MVLN, Reddy MR, Kumar CV. 2008. Effects of higher levels of zinc supplementation on performance, mineral availability, and immune competence in broiler chickens. J Appl Poult Res. 17:79-86.

Suprijati. 2013. Seng organik sebagai imbuhan pakan ruminansia. Wartazoa. 23:142-157.

Swain PS, Rao SBN, Rajendran D, Dominic G, Selvaraju S. 2016. Nano zinc, an alternative to conventional zinc as animal feed supplement: A review. Anim Nutr. 2:134-141.

Tachakittirungrod S, Okonogi S, Chowwanapoonpohn S. 2007. Study on antioxidant activity of certain plants in Thailand: Mechanism of antioxidant action of guava leaf extract. Food Chem. 103:381-388.

Thakkar KN, Mhatre SS, Parikh RY. 2010. Biological synthesis of metallic nanoparticles. Nanomedicine Nanotechnol Biol Med. 6:257-262.

Vinus, Sheoran N. 2017. Role of nanotechnology in poultry nutrition. Int J Pure App. 5:1237-1245.

Wang B, Feng W, Wang M, Wang T, Gu Y, Zhu M, Ouyang H, Shi J, Zhang F, Zhao Y, et al. 2008. Acute toxicological impact of nano and submicro-scaled zinc oxide powder on healthy adult mice. J Nanoparticle Res. 10:263-276.

Yogesh K, Deo C, Shrivastava HP, Mandal AB, Wadhwa A, Singh I. 2013. Growth performance, carcass yield, and immune competence of broiler chickens as influenced by dietary supplemental zinc sources and levels. Agric Res. 2:270-274.

Yu Y, Lu L, Wang RL, Xi L, Luo XG, Liu B. 2010. Effects of zinc source and phytate on zinc absorption by in situ ligated intestinal loops of broilers. Poult Sci. 89:2157-2165.

Zaboli K, Aliarabi H, Bahari AA, Abbasalipourkabir R. 2013. Role of dietary nano-zinc oxide on growth performance and blood levels of mineral: A study on in Iranian Angora (Markhoz) goat kids. J Pharm Heal Sci. 2:19-26.

Zha LY, Xu ZR, Wang MQ, Gu LY. 2008. Chromium nanoparticle exhibits higher absorption efficiency than chromium picolinate and chromium chloride in Caco-2 cell monolayers. J Anim Physiol Anim Nutr (Berl). 92:131-140.

Zhao CY, Tan SX, Xiao XY, Qiu XS, Pan JQ, Tang ZX. 2014. Effects of dietary zinc oxide nanoparticles on growth performance and antioxidative status in broilers. Biol Trace Elem Res. 160:361-367.


  • There are currently no refbacks.

Copyright (c)  2018 WARTAZOA. Indonesian Bulletin of Animal and Veterinary Sciences

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.