Morphological, Physiological, Productivity, and Nutritional Characteristics of Saline-Tolerant Forage Plants

Harmini Harmini, Achmad Fanindi, Maureen Chrisye Hadiatry

Abstract

Because of  a source of feed, saline-tolerant forage plants are one of the factors promoting the development of ruminant livestock on saline soils. Developing tolerant forage on saline soils necessitates several requirements cause saline soil stress reduces forage crop productivity. The strategy for developing forage on saline soils is to create forage that is characterized by morphology, physiology, biochemistry, and molecular biology. These characteristics must be identified in order for the forage developed to truly adapt to saline land and become local varieties or new high yielding varieties as a result of saline tolerant breeding. Forage production, performance (architecture), and nutrition are expected benefits of tolerant saline soils forage. Cultivation technology must support the genetic advantage of forage varieties on saline soils in order for their genetic potential to emerge. Planting superior forage varieties on saline land is expected to meet the ongoing need for feed while also developing livestock on sub-optimal land.

Keywords

characteristics, productivity, nutrition, suboptimal land

Full Text:

PDF

References

Abu-Alrub I, Marcum KB, Kabir N, Aran A, Al Hammadi M. 2018. Productivity and nutritional value of four forage grass cultivars compared to Rhodes grass irrigated with saline water. Aust J Crop Sci. 12(2):203–209.

Ali S, Ganai B, Kamili A, Bhat A, Mir Z, Bhat J, Tyagi A, Islam S, Mushtaq M, Yadav P. 2018. Pathogenesis-related proteins and peptides as promising tools for engineering plants with multiple stress tolerance. Microbiol Res. 212:29–37.

Amouei A. 2013. Effect of saline soil levels stresses on agronomic parameters and fodder value of the halophyte Atriplex leucoclada L. (Chenopodiaceae). African J Agric Res. 8(23):3007–3012.

Ashraf M, Athar HR, Harris PJC, Kwon TR. 2008. Some prospective strategies for improving crop salt tolerance. Adv Agron. 97:45–110.

Van Baarlen P, Van Belkum A, Summerbell R, Crous P, Bart P. 2007. Molecular mechanisms of pathogenicity: how do pathogenic microorganisms develop cross-kingdom host jumps? FEMS Micro Rev. 3:239–277.

Bertrand A, Dhont C, Bipfubusa M, Chalifour FP, Drouin P, Beauchamp CJ. 2015. Improving salt stress responses of the symbiosis in alfalfa using salt-tolerant cultivar and rhizobial strain. Appl Soil Ecol. 87:108–117.

Bhuiyan MSI, Raman A, Hodgkins D, Mitchell D, Nicol HI. 2017. Influence of high levels of Na+ and Cl− on ion concentration, growth, and photosynthetic performance of three salt-tolerant plants. Flora Morphol Distrib Funct Ecol Plants [Internet]. 228:1–9. http://dx.doi.org/10.1016/j.flora.2016.12.010

Boga M, Yurtseven S, Kilic U, Aydemir S, Polat T. 2014. Determination of nutrient contents and in vitro gas production values of some legume forages grown in the harran plain saline soils. Asian-Australasian J Anim Sci. 27(6):825–831.

Bothe H, Słomka A. 2017. Divergent biology of facultative heavy metal plants. J Plant Physiol. 219(September):45–61.

Bouhmouch I, Souad-Mouhsine B, Brhada F, Aurag J. 2005. Influence of host cultivars and Rhizobium species on the growth and symbiotic performance of Phaseolus vulgaris under salt stress. J Plant Physiol. 165:1103–1113.

Can E, Arslan M, Sener O, Daghan H. 2018. Response of strawberry clover ( Trifolium fragiferum L .) to salinity stress Response of strawberry clover ( Trifolium fragiferum L . ) to salinity stress. Res Crop. 14(2):576–584.

El-Keblawy A. 2004. Salinity effects on seed germination of the common desert range grass, Panicum turgidum. Seed Sci Technol. 32(3):873–878.

Elfeel AA, Bakhashwain AA. 2012. Salinity Effects on Growth Attributes Mineral Uptake, Forage Quality and Tannin Contents of Acacia saligna (Labill.) H. Wendl. Res J Environ Earth Sci. 4(11):990–995.

Fahmy AA, Youssef KM, El Shaer HM. 2010. Intake and nutritive value of some salt-tolerant fodder grasses for sheep under saline conditions of South Sinai, Egypt. Small Rumin Res [Internet]. 91(1):110–115. http://dx.doi.org/10.1016/j.smallrumres.2009.11.023

Flowers TJ, Munns R, Colmer TD. 2015. Sodium chloride toxicity and the cellular basis of salt tolerance in halophytes. Ann Bot. 115:419–431.

Fuskhah Eny, Soetrisno RD, Anwar S, Kusmiyati F. 2014. Uji Asosiasi Bakteri Rhizobium Terseleksi dengan Leguminosa Pakan dalam Kondisi Tercekam Salin. J Agripet. 14(1):65–70.

Fuskhah E, Soetrisno RD, Anwar S, Kusmiyati F. 2014. Kajian morfologi dan fisiologi ketahanan leguminosa pakan terhadap salinitas media tanam. Agromedia. 32(2):45–53.

Gu C, Iwaasa A, Canada A. 2018. Seeding Rate and Fertility Effects on AC Saltlander Forage Production on Saline Soils. Agron J. III(1):328–335.

Gu C, Iwaasa AD, Wall K, Gatzke C, Zhang J, Zhao M. 2020. Flooding and salinity reduces AC saltlander green wheatgrass and smooth bromegrass productivity. Agron J. 112(2):1101–1110.

Guo P, Wei H, Zhang W, Bao Y. 2016. Physiological Responses of Alfalfa to high-level salt stress: Root ion flux and stomatal characteristics. Int J Agric Biol. 18(1):125–133.

Hameed M, Naz. N, Ahmad MSA, Din IU, Riaz A. 2008. Morphological adaptations of some grasses from the salt range, Pakistan. Pakistan J Bot. 40(4 SPEC. ISS.):1571–1578.

Harisha C, Jani S. 2013. Pharmaconostical Study on Trichomes of Solanaceae and its Significance. [place unknown]: Jamnagar : IPGT & RA Gujarat Ayurved University.

Harjadi SS, Yahya S. 1988. Fisiologi Stress Lingkungan. Bogor (ID): PAU Bioteknologi IPB Bogor.

Herdiawan I, Krisna R. 2014. Produktivitas dan Pemanfaatan Tanaman Leguminosa Pohon Indigofera zollingeriana pada Lahan Kering. wartazoa. 24(2):75–82.

Himabindu Y, Chakradhar T, Reddy MC, Kanygin A, Redding KE, Chandrasekhar T. 2016. Salt-tolerant genes from halophytes are potential key players of salt tolerance in glycophytes. Environ Exp Bot [Internet]. 124:39–63. http://dx.doi.org/10.1016/j.envexpbot.2015.11.010

Holmes P, Farquharson R, Hall PJ, Rolfe BG. 2006. Proteomic analysis of root meristems and the effects of ace tohydroxyacid synthase-inhibiting herbicides in the root of Medicago truncatula. J Proteome Res. 5:2309–2316.

Kang P, Bao A-K, Kumar T, Pan Y-Q, Bao Z, Wang F, Suo-Min W. 2016. Assessment of stress tolerance, productivity, and forage quality in T1 transgenic alfalfa co-overexpressing ZxNHX and ZxVP1-1 from Zygophyllum xanthoxylum. Front Plant Sci. 7:1–11.

Kapoor R, Gupta MK, Kumar N, Kanwar SS. 2017. Analysis of nhaA gene from salt tolerant and plant growth promoting Enterobacter ludwigii. Rhizosphere [Internet]. 4:62–69. http://dx.doi.org/10.1016/j.rhisph.2017.07.002

Karolinoerita V, YusufAnnisa W. 2020. Salinisasi Lahan dan Permasalahannya di Indonesia. J Sumberd Lahan. 14(2):91.

Katilé SO, Perumal R, Rooney WL, Prom LK, Magill CW. 2010. Expression of pathogenesis-related protein PR-10 in sorghum floral tissues in response to inoculation with Fusarium thapsinum and Curvularia lunata. Mol Plant Pathol. 11(1):93–103.

Keskin B, Temel S, Yilmaz H, Şimşek U. 2017. Accumulation of macronutrients in forage grasses under saline and alkaline conditions. J Anim Plant Sci. 27(3):961–970.

Khedr AH, Serag M, Alhalak O, Shaaban H. 2021. Response to salt stress of two wetland grasses of forage potentialities. Rev Bras Bot [Internet]. 44(2):345–358. https://doi.org/10.1007/s40415-021-00702-2

Kumar S, Kumar Ashwani, Kumar P, Kumar R, Lata C, Kumar Arvind, Soni P, Sheoran P. 2015. Effect of Salt Stress on Fodder Yield and Quality of Grass and Non-Grass Halophytes. Indian J Anim Nutr. 32(3):295–299.

Kusmiyati F, Pangestu E. 2013. Effect of mulch and mixed cropping grass - legume at saline soil on growth , forage yield and nutritional quality of guinea grass. J Indones Trop Anim Agric. 38(1):72–78.

Kusmiyati F, Purbajanti ED, Kristanto BA. 2009. Macro nutrients uptake of forage grasses at different salinity stresses. J Indones Trop Anim Agric. 34(3):205–210.

Kusmiyati F, Sumarsono S, Karno K. 2014. Pengaruh perbaikan tanah salin terhadap karakter fisiologis Calopogonium mucunoides. Pastura. 4(1):1–6.

Le T, Williams B, Mundree S. 2017. An osmotin from the resurrection plant Tripogon loliiformis (TlOsm) confers tolerance to multiple abiotic stresses in transgenic rice. Plant Physiol. 162:13–14.

van Loon L, Rep M, Pieterse C. 2006. Significance of Inducible Defense-related Proteins in Infected Plants. Annu Rev Phytopathol. 44:135–162.

Makarana G, Yadav RK, Kumar R, Soni PG. 2017. Fodder Yield and Quality of Pearl Millet Genotypes Under Different Levels of Salinity of Irrigation Water Fodder Yield and Quality of Pearl Millet ( Pennisetum glaucum L .) Genotypes as Influenced by Salinity of Irrigation Water in North Western India. Indian J Anim Nutr. 34(1):56–63.

Marcum KB, Pessarakli M. 2013. Relative Salinity Tolerance of 35 Lolium spp. Cultivars for Urban Landscape and Forage Use. In: Shahid SA, editor. Dev Soil Salin Assess Reclam Innov Think Use Marg Soil Water Resour Irrig Agric. [place unknown]: Springer Science; p. 397–403.

Marschner H. 1995. “Adaptation of plants to adverse chemical soil conditions. In: Miner Nutr High Plants. 2nd ed. London(UK): Academic Press.

Memon SA, Hou X, Wang L. 2010. Morphlogical analysis of salt stress response of pak choi. Electr J Env Agric Food Chem. 9:248–254.

Menezes RV, Azevedo Neto AD de, Ribeiro M de O, Cova AMW. 2017. Growth and contents of organic and inorganic solutes in amaranth under salt stress. Pesqui Agropecuária Trop. 47(1):22–30.

Munns R. 2002. Comparative physiology of salt and water stress. Plant Cell Env. 25:239‒250.

Munns R, Tester M. 2008. Mechanisms of salinity tolerance. Annu Rev Plant Biol. 59:651–681.

Muscolo A, Panuccio MR, Eshel A. 2013. Ecophysiology of Pennisetum clandestinum: A valuable salt tolerant grass. Environ Exp Bot [Internet]. 92:55–63. http://dx.doi.org/10.1016/j.envexpbot.2012.07.009

Nemati I, Moradi, FGholizadeh S, Esmaeili MA, Bihamta MR. 2011. The effect of salinity stress on ions and soluble sugars distribution in leaves, leaf sheaths and roots of rice (Oryza sativa L.) seedlings. Plant Soil Env. 57:26–33.

Omoto E, Iwasaki Y, Miyake H, Taniguchi M. 2016. Salinity induces membrane structure and lipid changes in maize mesophyll and bundle sheath chloroplasts. Physiol Plant. 157(1):13–23.

Pinasih C. 2013. Kecernaan bahan kering dan bahan organik rumput benggala (Panicum maximum) secara in vitro pada berbagai upaya perbaikan tanah salin. Anim Agric J. 2(4):73–88.

Pradewa C, Sumarsono S, Kusmiyati F. 2012. Karakteristik fisiologi rumput benggala (Panicum maximum) pada tanah salin yang diperbaiki. Anim Agric J. 1(2):278–285.

Priyanto B. 2012. Toleransi lima jenis rumput terhadap minyak dan kapasitas degradasinya dalam sistem fitoremediasi. JTekLing. 13(2):141–149.

Purbajanti ED, Soetrisno D, Hanudin E, Budi S. 2007. Karakteristik lima jenis rumput pakan pada berbagai tingkat salinitas. Trop Anim Agric. 32(3):186–197.

Purbajanti E. D., Soetrisno RD, Hanudin E, Budhi SPS. 2010. Photosynthesis and yields of grasses grown in saline condition. J Indon Trop Anim Agric. 35(1):42–47.

Purbajanti E D, Soetrisno RD, Hanudin E, Budhi SPS. 2010. Penampilan fisiologi dan hasil rumput benggala ( Panicum maximum Jacq .) pada tanah salin akibat pemberian pupuk kandang , gypsum dan sumber nitrogen. J Ilmu - Ilmu Pertan Indones. 12(1):61–67.

Purbajanti ED, Sutrisno RD, Hanudin E, Sasmito Budhi SP. 2011. Produksi, kualitas, dan kecernaan in vitro tanaman rumput benggala (Panicum maximum) pada lahan salin. Bul Peternak. 35(1):30.

Purwaningrahayu RD, Sebayang HT, Aini N. 2016. Tanggap Fisiologis dan Hasil Biji Berbagai Genotipe Kedelai terhadap Cekaman Salinitas. Bul Palawija. 14(1):18–27.

Purwaningrahayu RD, Taufiq A. 2017. Respon Morfologi Empat Genotip Kedelai Terhadap Cekaman Salinitas. J Biol Indones. 13(2):175–188.

Qados A. 2011. Effect of salt stress on plant growth and metabolism of bean plant Vicia faba (L.). J Saudi Soc Agric Sci. 10:7–15.

Rachman A, Subiksa I, Wahyunto W. 2007. Perluasan areal tanaman kedelai ke lahan suboptimal. In: Sumarno, Suyamto A, Widjono, Hermanto H kasi., editors. Kedelai Tek produksi dan pengembangan Badan Litbang Pertan. [place unknown]: Puslitbangtan; p. 185–204.

Rahman A, Dariah A, Sutono S. 2018. Buku Pengelolaan Sawah Salin Berkadar Garam tinggi. Jakarta (ID): IAARD Press.

Rasheed MJZ, Ahmad K, Ashraf M, Al-Qurainy F, Khan S, Athar HUR. 2015. Screening of diverse local germplasm of guar [Cyamopsis tetragonoloba (L.) Taub.] for salt tolerance: A possible approach to utilize salt-affected soils. Pakistan J Bot. 47(5):1721–1726.

Ribotta AN, Griffa SM, Díaz D, Carloni EJ, López Colomba E, Tommasino EA, Quiroga M, Luna C, Grunberg K. 2013. Selecting salt-tolerant clones and evaluating genetic variability to obtain parents of new diploid and tetraploid germplasm in rhodesgrass (Chloris gayana K.). South African J Bot [Internet]. 84:88–93. http://dx.doi.org/10.1016/j.sajb.2012.10.001

Rokebul Anower M, Peel MD, Mott IW, Wu Y. 2017. Physiological processes associated with salinity tolerance in an alfalfa half-sib family. J Agron Crop Sci. 203(6):506–518.

Roy AK, Malaviya DR, Kaushal P. 2016. Genetic improvement of fodder legumes especially dual purpose pulses. Indian J Genet Plant Breed. 76(4):608–625.

Roy S, Chakraborty U. 2017. Screening of salt-tolerance potential of some native forage grasses from the eastern part of Terai-Duar grasslands in India. Trop Grasslands-Forrajes Trop. 5(3):129–142.

Ruiz M, Taleisnik E. 2013. Field hydroponics assessment of salt tolerance in Cenchrus ciliaris (L.): Growth, yield, and maternal effect. Crop Pasture Sci. 64(6):631–639.

Saberi AR, Hassan H, Aishah S. 2013. Nutrient concentration of forage sorghum (Sorghum bicolor L) varieties under influenced of salinity and irrigation frequency. Int J Biotechnol. 2(10):163–170.

El Shaer HM. 2010. Halophytes and salt-tolerant plants as potential forage for ruminants in the Near East region. Small Rumin Res [Internet]. 91(1):3–12. http://dx.doi.org/10.1016/j.smallrumres.2010.01.010

Shannon MC, Grieve CM. 1999. Tolerance of vegetable crops to salinity. Sci Hort Amsterdam. 78:5–38.

Al Sherif EA. 2009. Melilotus indicus (L.) All., a salt-tolerant wild leguminous herb with high potential for use as a forage crop in salt-affected soils. Flora Morphol Distrib Funct Ecol Plants [Internet]. 204(10):737–746. http://dx.doi.org/10.1016/j.flora.2008.10.004

Singh N, Kumar K, Kumar RR, Shukla D, Kirti P. 2013. Characterization of a Pathogen induced thaumatin-like protein gene AdTLP from Arachis deogoi, a wild peanut. PLoS One. 8(12):e83963.

Sobir S, Miftahudin M, Helmi S. 2018. Respon Morfologi dan Fisiologi Genotipe Terung. J Hort Indones. 9(2):131–138.

Sopandie D. 2013. Fisiologi adaptasi tanaman terhadap cekaman abiotik pada agroekosistem tropika. I. Bogor(ID): IPB Press.

Strawn DG, Bohn HL, O’Connor GA. 2019. Soil Chemistry. West Sussex (UK): John Wiley & Sons.

Stritzler M, Elba P, Berini C, Gomez C, Ayub N, Soto G. 2018. High-quality forage production under salinity by using a salt-tolerant AtNXH1-expressing transgenic alfalfa combined with a natural stress-resistant nitrogen-fixing bacterium. J Biotechnol [Internet]. 276–277:42–45. https://doi.org/10.1016/j.jbiotec.2018.04.013

Suhartini T, Harjosudarmo TZP. 2017. Toleransi Plasma Nutfah Padi Lokal terhadap Salinitas. Bul Plasma Nutfah. 23(1):51–58.

Sukarman, S, Mulyani A, Purwanto S. 2018. Modifikasi metode evaluasi kesesuaian lahan berorientasi perubahan iklim. J Sumberd Lahan. 12(1):1–18.

Taffouo V, Wamba O, Youmbi E, Nono G, Akoa A. 2010. Growth, yield, water status and ionic distribution response of three bambara groundnut (Vigna subterranea (L.) Verdc.) landraces grown under saline conditions. Int J Bot. 6:53–58.

Tang J, Yu X, Luo N, Xiao F, Camberato JJ, Jiang Y. 2013. Natural variation of salinity response, population structure and candidate genes associated with salinity tolerance in perennial ryegrass accessions. Plant, Cell Environ. 36(11):2021–2033.

Temel S, Surmen M, Tan M. 2015. Effects of growth stages on the nutritive value of specific halophyte species in saline grasslands. J Anim Plant Sci. 25(5):1419–1428.

Víctor P, Willy C. 2020. Influencia de la salinidad sobre el desarrollo de seis especies forrajeras en dos técnicas de implementación , cuenca baja del Río Lauca Salinity influence in the development of six forage species with two implementation techniques in lower basin of the L. J Selva Andin Biosph. 8(2):110–127.

Waldron BL, Sagers JK, Peel MD, Rigby CW, Bugbee B, Creech JE. 2020. Salinity Reduces the Forage Quality of Forage Kochia: A Halophytic Chenopodiaceae Shrub. Rangel Ecol Manag [Internet]. 73(3):384–393. https://doi.org/10.1016/j.rama.2019.12.005

Witzel K, Matros A, Møller ALB, Ramireddy E, Finnie C, Peukert M, Rutten T, Herzog A, Kunze G, Melzer M, et al. 2018. Plasma membrane proteome analysis identifies a role of barley membrane steroid binding protein in root architecture response to salinity. Plant Cell Environ. 41(6):1311–1330.

Worku A, Mamo B, Bekele T. 2019. Evaluation of some selected forage grasses for their salt tolerance , ameliorative effect and biomass yield under salt affected soil at Southern Afar , Ethiopia. J Soil Sci Environ Manag. 10(7):94–102.

Wu H. 2018. Plant salt tolerance and Na+ sensing and transport. Crop J [Internet]. 6(3):215–225. https://doi.org/10.1016/j.cj.2018.01.003

Zhang JT, Mu CS. 2009. Effects of saline and alkaline stresses on the germination, growth, photosynthesis, ionic balance and anti-oxidant system in an alkali-tolerant leguminous forage Lathyrus quinquenervius. Soil Sci Plant Nutr. 55(5):685–697.

Refbacks

  • There are currently no refbacks.

Copyright (c)  2022 WARTAZOA. Indonesian Bulletin of Animal and Veterinary Sciences

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

View My Stats