Utilization of Cricket (Gryllus bimaculatus), Black Soldier Fly (Hermetia illucens), Mealworm (Tenebrio molitor), and Silkworm (Samia ricini dan Bombyx mori) as Alternative Protein Sources in Feed

Agustin Herliatika, Dika Permatahati, Yusti Pujiawati, Gresy Eva Tresia, Elizabeth Wina

Abstract

The insect contains high protein, which is potentially used as an unconventional protein source. The cost of this feedstuff production is cheap by using waste. Moreover, this production can help the environment by decreasing the number of unprocessed wastes. According to that condition, this study is aimed to know the level uses of several kinds of insects (cricket, black soldier fly, mealworm, and silkworm) as the unconventional protein sources in replacing fish meal and soybean meal as conventional protein sources that are evaluated according to nutrient contents. The result shows that the insect meal contains similar crude protein (CP) contents and higher ether-extract (EE) compare to conventional protein sources. The insect meal contains higher tyrosine, but lower arginine, histidine, lysine, and tryptophan compare to fish meal and soybean meal. The chitin content in unconventional protein sources decreases the feed digestibility, but it can be used as antibacterial and antifungal in feed, also mitigating an enteric methane emission. Unconventional protein sources in layer and broiler diet can replace soybean meal, meanwhile, in quail diet, it can replace fish meal. The potential addition of BSF, cricket, mealworm, and silkworm in the broiler’s diet is 8% DM, 5-15% DM, 5-29,5% DM, and 7,8% DM, respectively.  The potential addition of BSF and mealworm in the layer’s diet is 10-15% DM and 2-5% DM, respectively. The potential addition of cricket, mealworm and silkworm in the quail’s diet is 2-8% DM, 2,25% DM, and 2,08-6,25% DM, respectively.

Keywords

Cricket; Black Soldier Fly; mealworm; silkworm; insect

Full Text:

PDF

References

Barroso FG, de Haro C, Sánchez-Muros MJ, Venegas E, Martínez-Sánchez A, Pérez-Bañón C. 2013. The potential of various insect species for use as food for fish. Aquaculture. 422–423:193–201. doi:10.1016/j.aquaculture.2013.12.024. http://dx.doi.org/10.1016/j.aquaculture.2013.12.024.

Battampara P, Nimisha Sathish T, Reddy R, Guna V, Nagananda GS, Reddy N, Ramesha BS, Maharaddi VH, Rao AP, Ravikumar HN, et al. 2020. Properties of chitin and chitosan extracted from silkworm pupae and egg shells. Int J Biol Macromol. 161:1296–1304. doi:10.1016/j.ijbiomac.2020.07.161. https://doi.org/10.1016/j.ijbiomac.2020.07.161.

Bhagat RP, Barat S. 2017. Impact of artificial feed on survival and growth of Rainbow trout, Oncorhynchus mykiss (Walbaum) during exogenous feeding in Raceways of Kathmandu, Nepal. Int J Pure Appl Biosci. 5(1):149–156.

Biasato I, Gasco L, De Marco M, Renna M, Rotolo L, Dabbou S, Capucchio M, Biasibetti E, Tarantola M, Sterpone L, et al. 2018. Yellow mealworm larvae (Tenebrio molitor) inclusion in diets for male broiler chicken: effects on growth performance, gut morphology, and histological findings. Poult Sci. 97:540–548. doi:http://dx.doi.org/10.3382/ps/pex308.

Bosch G, Zhang S, Oonincx DGAB, Hendriks WH. 2014. Protein quality of insects as potential ingredients for dog and cat foods. J Nutr Sci. 3:1–4. doi:10.1017/jns.2014.23.

Bovera F, Loponte R, Marono S, Piccolo G, Parisi G, Iaconisi V, Gasco L, Nizza A. 2016. Use of Tenebrio molitor larvae meal as protein source in broiler diet: Effect on growth performance, nutrient digestibility, and carcass and meat traits. J Anim Sci. 94(2):639–647. doi:10.2527/jas.2015-9201.

Dewi IP, Taufikurohman MR, Bross N. 2021. Analisis kelayakan finansial pembuatan pakan ternak dari sampah organik dapur. J Ekon Pertan dan Agribisnis. 5(3):869–877. doi:https://doi.org/10.21776/ub.jepa.2021.005.03.24.

Dong HL, Zhang SX, Tao H, Chen ZH, Li X, Qiu JF, Cui Wen Zhao, Sima YH, Cui Wei Zheng, Xu SQ. 2017. Metabolomics differences between silkworms (Bombyx mori) reared on fresh mulberry (Morus) leaves or artificial diets. Sci Rep. 7(1):1–16. doi:10.1038/s41598-017-11592-4. http://dx.doi.org/10.1038/s41598-017-11592-4.

Dong L, Ariëns RMC, America AHP, Paul A, Veldkamp T, Mes JJ, Wichers HJ, Govers C. 2021. Clostridium perfringens suppressing activity in black soldier fly protein preparations. Lwt-Food Sci Technol. 149(May). doi:10.1016/j.lwt.2021.111806.

Estetika Y, Endrawati YC. 2018. Produktivitas ulat sutera (Bombyx mori L.) ras BS-09 di daerah tropis. J Ilmu Produksi dan Teknol Has Peternak. 6(3):104–112. doi:10.29244/jipthp.6.3.104-112.

Ewald N, Vidakovic A, Langeland M, Kiessling A, Sampels S, Lalander C. 2020. Fatty acid composition of black soldier fly larvae (Hermetia illucens) – Possibilities and limitations for modification through diet. Waste Manag. 102:40–47. doi:10.1016/j.wasman.2019.10.014. https://doi.org/10.1016/j.wasman.2019.10.014.

Fauzi RUA, Sari ERN. 2018. Analisis usaha budidaya maggot sebagai alternatif pakan lele. J Teknol dan Manaj Agroindustri. 7(1):39–46.

Fuah AM, Siregar HCH, Endrawati YC. 2015. Cricket farming for animal protein as profitable business for small farmers in Indonesia. J Agric Sci Technol A. 5(4):296–304. doi:10.17265/2161-6256/2015.04.008.

Grapes M, Whiting P, Dinan L. 1989. Fatty acid and lipid analysis of the House Cricket, a cheta domesticus. 19(8):767–774.

van Huis A, Dicke M, van Loon JJA. 2015. Insects to feed the world. J Insects as Food Feed. 1(1):3–5. doi:10.3920/JIFF2015.x002.

Hussain I, Khan S, Sultan A. 2017. Meal worm (Tenebrio molitor) as potential alternative source of protein supplementation in broiler. Int J Biosci. 10(04):255–262. doi:10.12692/ijb/10.4.255-262.

Jayanegara A, Gustanti R, Ridwan R, Widyastuti Y. 2020. Fatty acid profiles of some insect oils and their effects on in vitro bovine rumen fermentation and methanogenesis. Ital J Anim Sci. 19(1):1311–1318. doi:10.1080/1828051X.2020.1841571. https://doi.org/10.1080/1828051X.2020.1841571.

Jayanegara A, Yantina N, Novandri B, Laconi EB, Nahrowi, Ridla M. 2017. Evaluation of some insects as potential feed ingredients for ruminants: Chemical composition, in vitro rumen fermentation and methane emissions. J Indones Trop Anim Agric. 42(4):247–254. doi:10.14710/jitaa.42.4.247-254.

Khan S, Khan RU, Alam W, Sultan A. 2018. Evaluating the nutritive profile of three insect meals and their effects to replace soya bean in broiler diet. J Anim Physiol Anim Nutr (Berl). 102(2):e662–e668. doi:10.1111/jpn.12809.

Khusro M, Andrew NR, Nicholas A. 2012. Insects as poultry feed: A scoping study for poultry production systems in Australia. Worlds Poult Sci J. 68(3):435–446. doi:10.1017/S0043933912000554.

Lawal KG, Kavle RR, Akanbi TO, Mirosa M, Agyei D. 2021. Enrichment in specific fatty acids profile of Tenebrio molitor and Hermetia illucens larvae through feeding. Futur Foods. 3(January):100016. doi:10.1016/j.fufo.2021.100016.

Lazuardi R, Baihaqi A, Fauzi T. 2020. Aalisis kelayakan usaha budiaya ulat hongkong (Tenebrio molitor) (Studi kasus usaha budidaya ulat hongkong di Kecamatan Indrapuri Kabupaten Aceh Besar). J Ilm Mhs Pertan. 5:108–120.

Longvah T, Mangthya K, Ramulu P. 2011. Nutrient composition and protein quality evaluation of eri silkworm (Samia ricinii) prepupae and pupae. Food Chem. 128(2):400–403. doi:10.1016/j.foodchem.2011.03.041. http://dx.doi.org/10.1016/j.foodchem.2011.03.041.

Makkar HPS, Tran G, Heuzé V, Ankers P. 2014. State-of-the-art on use of insects as animal feed. Anim Feed Sci Technol. 197:1–33. doi:10.1016/j.anifeedsci.2014.07.008. http://dx.doi.org/10.1016/j.anifeedsci.2014.07.008.

Mutiara F, Asnani DNH. 2017. Strategi pengembangan agribisnis ulat sutera pemakan daun singkong di Kabupaten Malang. J Ilmu-Ilmu Peternak. 27(3):24–38. doi:10.21776/ub.jiip.2017.027.03.04

De Marco M, Martínez S, Hernandez F, Madrid J, Gai F, Rotolo L, Belforti M, Bergero D, Katz H, Dabbou S, et al. 2015. Nutritional value of two insect larval meals (Tenebrio molitor and Hermetia illucens) for broiler chickens: Apparent nutrient digestibility, apparent ileal amino acid digestibility and apparent metabolizable energy. Anim Feed Sci Technol. 209(January):211–218. doi:10.1016/j.anifeedsci.2015.08.006. http://dx.doi.org/10.1016/j.anifeedsci.2015.08.006.

Matin N, Utterback P, Parsons CM. 2021. True metabolizable energy and amino acid digestibility in black soldier fly larvae meals, cricket meal, and mealworms using a precision-fed rooster assay. Poult Sci. 100(7):101146. doi:10.1016/j.psj.2021.101146. https://doi.org/10.1016/j.psj.2021.101146.

Mlček J, Adámková A, Adámek M, Borkovcová M, Bednářová M, Kouřimská L. 2018. Selected nutritional values of field cricket (Gryllus assimilis) and its possible use as a human food. Indian J Tradit Knowl. 17(3):518–524.

Moula N, Detilleux J. 2019. A meta-analysis of the effects of insects in feed on poultry growth performances. Animals. 9(5):1–13. doi:10.3390/ani9050201.

Mwaniki Z, Shoveller AK, Huber LA, Kiarie EG. 2020. Complete replacement of soybean meal with defatted black soldier fly larvae meal in Shaver White hens feeding program (28–43 wks of age): impact on egg production, egg quality, organ weight, and apparent retention of components. Poult Sci. 99(2):959–965. doi:10.1016/j.psj.2019.10.032. https://doi.org/10.1016/j.psj.2019.10.032.

Panjaitan I, Sofiana A, Priabudiman Y. 2012. Suplementasi tepung jangkrik sebagai sumber protein pengaruhnya terhadap kinerja burung puyuh (Coturnix coturnix japonica). J Ilm Ilmu-ilmu Peternak Univ Jambi. XV(1):8–14. doi:10.22437/jiiip.v15i1.1513.

Paul A, Frederich M, Megido RC, Alabi T, Malik P, Uyttenbroeck R, Francis F, Blecker C, Haubruge E, Lognay G, et al. 2017. Insect fatty acids: A comparison of lipids from three Orthopterans and Tenebrio molitor L. larvae. J Asia Pac Entomol. 20(2):337–340. doi:10.1016/j.aspen.2017.02.001.

Paulino AT, Simionato JI, Garcia JC, Nozaki J. 2006. Characterization of chitosan and chitin produced from silkworm crysalides. Carbohydr Polym. 64(1):98–103. doi:10.1016/j.carbpol.2005.10.032.

Permatahati D, Mutia R, Astuti DA. 2019. Effect of cricket meal (Gryllus bimaculatus) on production and physical quality of Japanese quail egg. Trop Anim Sci J. 42(1):53–58. doi:10.5398/tasj.2019.42.1.53.

Rahmasari R, Sumiati S, Astuti DA. 2014. The effect of silkworm pupae (Bombyx mori) meal to substitute fish meal on production and physical quality of quail eggs (Cortunix cortunix japonica). J Indones Trop Anim Agric. 39(3):180–187. doi:10.14710/jitaa.39.3.180-187.

Ruth L, Ghatak S, Subbarayan S, Choudhury BN, Gurusubramanian G, Kumar NS, Bin T. 2019. Influence of micronutrients on the food consumption rate and silk production of Bombyx mori (Lepidoptera: Bombycidae) reared on mulberry plants grown in a mountainous agro-ecological condition. Front Physiol. 10(JUL):1–11. doi:10.3389/fphys.2019.00878.

Sánchez-Muros MJ, Barroso FG, Manzano-Agugliaro F. 2014. Insect meal as renewable source of food for animal feeding: A review. J Clean Prod. 65(February 2018):16–27. doi:10.1016/j.jclepro.2013.11.068. http://dx.doi.org/10.1016/j.jclepro.2013.11.068.

Setiyawan AI, Fitasari E. 2018. Pengaruh perbedaan tiga jenis daun ketela pohon terhadap konsumsi dan konversi pakan ulat sutera Samia cynthia. TERNAK Trop J Trop Anim Prod. 19(1):32–37. doi:10.21776/ub.jtapro.2018.019.01.5.

Shanker KS, Shireesha K, Kanjilal S, Kumar SVLN, Srinivas C, Rao JVK, Prasad RBN. 2006. Isolation and characterization of neutral lipids of desilked eri silkworm pupae grown on castor and tapioca leaves. J Agric Food Chem. 54(9):3305–3309. doi:10.1021/jf060581x.

Siemianowska E, Kosewska A, Aljewicz M, Skibniewska KA, Polak-Juszczak L, Jarocki A, Jędras M. 2013. Larvae of mealworm (Tenebrio molitor L.) as European novel food. Agric Sci. 04(06):287–291. doi:10.4236/as.2013.46041.

Soetemans L, Uyttebroek M, Bastiaens L. 2020. Characteristics of chitin extracted from black soldier fly in different life stages. Int J Biol Macromol. 165:3206–3214. doi:10.1016/j.ijbiomac.2020.11.041. https://doi.org/10.1016/j.ijbiomac.2020.11.041.

Song YS, Kim MW, Moon C, Seo DJ, Han YS, Jo YH, Noh MY, Park YK, Kim SA, Kim YW, et al. 2018. Extraction of chitin and chitosan from larval exuvium and whole body of edible mealworm, Tenebrio molitor. Entomol Res. 48(3):227–233. doi:10.1111/1748-5967.12304.

Stastnik O, Novotny J, Roztocilova A, Kouril P, Kumbar V, Cernik J, Kalhotka L, Pavlata L, Lacina L, Mrkvicova E. 2021. Safety of mealworm meal in layer diets and their influence on gut morphology. Animals. 11(5). doi:10.3390/ani11051439.

Stull VJ, Kersten M, Bergmans RS, Patz JA, Paskewitz S. 2019. Crude protein, amino acid, and iron content of Tenebrio molitor (Coleoptera, Tenebrionidae) reared on an agricultural byproduct from maize production: An exploratory study. Ann Entomol Soc Am. 112(6):533–543. doi:10.1093/aesa/saz024.

Taufek NM, Muin H, Raji AA, Razak SA, Yusof HM, Alias Z. 2016. Apparent digestibility coefficients and amino acid availability of cricket meal, Gryllus bimaculatus, and Fishmeal in African Catfish, Clarias gariepinus, Diet. J World Aquac Soc. 47(6):798–805. doi:10.1111/jwas.12302.

Tazikeh T, Abedian Kenari A, Esmaeili M. 2019. Effects of fish meal replacement by meat and bone meal supplemented with garlic (Allium sativum) powder on biological indices, feeding, muscle composition, fatty acid and amino acid profiles of whiteleg shrimp (Litopenaeus vannamei). Aquac Res.:1–13. doi:10.1111/are.14416.

Tomotake H, Katagiri M, Yamato M. 2010. Silkworm pupae (Bombyx mori) are new sources of high quality protein and lipid. J Nutr Sci Vitaminol (Tokyo). 56(6):446–448. doi:10.3177/jnsv.56.446.

Traksele L, Speiciene V, Smicius R, Alencikiene G, Salaseviciene A, Garmiene G, Zigmantaite V, Grigaleviciute R, Kucinskas A. 2021. Investigation of in vitro and in vivo digestibility of black soldier fly (Hermetia illucens L.) larvae protein. J Funct Foods. 79:104402. doi:10.1016/j.jff.2021.104402. https://doi.org/10.1016/j.jff.2021.104402.

Wang D, Shao WZ, Chuan XZ, Yao YB, Shi HA, Ying NX. 2005. Evaluation on nutritional value of field crickets as a poultry feedstuff. Asian-Australasian J Anim Sci. 18(5):667–670. doi:10.5713/ajas.2005.667.

Wardhana A. 2016. Black Soldier Fly (Hermetia illucens) as an plternative protein source for animal feed. Wartazoa 26(2):069–078. doi:10.14334/wartazoa.v26i2.1218.

Yoo JS, Cho KH, Hong JS, Jang HS, Chung YH, Kwon GT, Shin DG, Kim YY. 2019. Nutrient ileal digestibility evaluation of dried mealworm (Tenebrio molitor) larvae compared to three animal protein by-products in growing pigs. Asian-Australasian J Anim Sci. 32(3):387–394. doi:10.5713/ajas.18.0647.

Zadeh ZS, Kheiri F, Faghani M. 2020. Productive performance, egg-related indices, blood profiles, and interferon-Ɣ gene expression of laying Japanese quails fed on Tenebrio molitor larva meal as a replacement for fish meal. Ital J Anim Sci. 19(1):274–281. doi:10.1080/1828051X.2020.1722970.

Refbacks

  • There are currently no refbacks.

Copyright (c)  2021 WARTAZOA. Indonesian Bulletin of Animal and Veterinary Sciences

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.