Processing Technologies of Lignocellulosic Biomass: Potentials and Constraints for Ruminant Feed Production

Simon Petrus Ginting


Lignocellulosic biomass (LCB) such as crop residues and agro-industrial wastes are renewable resources and available abundantly. It could play central role in sustainable feeding system of ruminant production. These materials are potential source of fiber to support optimum rumen function and energy supply. However, the LCB has important nutritional constraints that limit its utilization as feed for ruminants. This review is intended to discuss nutritional constraints of LCB as ruminant feed and the potentials and challenges of processes in upgrading the nutritional quality of LCB. The main polymer compounds in LCB are  cellulose (30 to 60% ), hemicellulose (20 to 40 %) and lignin (15-25%)  and its  inter linkages make the energy contained in the LCB is less extractable by the ruminant digestive system. Physical, chemical and biological processing technologies have been well known as  alternative means to upgrade the nutritive values of LCB. Recently, novel processing technologies of LCB such as ionic liquid, organosolv, sonication, and new screened rot white fungi (Ceriporiopsis subvermispora) and some older technologies  using alkaline and acids have been studied and developed particularly for the purpose of biofuel production in the bio refinery industry. Processing technologies have different properties in degrading the lignin, degrading and solubilizing the cellulose and hemicellulose that all relate to the nutritive quality of LCB. Advantages of processed LCB in ruminant animals were indicated by increase in diet digestibility, intake, rumen fermentation and gain. It is concluded that numerous processing technologies are available to upgrade the nutritional quality of LCB, but there are obstacles to use some of these techniques for wide application in ruminant production system.


Lignocellulosic biomass; processing technology; feed; ruminants

Full Text:



Adesogan AT, Arriola KG, Jiang Y, Oyebade A, Paula EM, Pech-Cervantes AA, Romero JJ, Ferraretto LF, Vyas D. 2019. Symposium review: Technologies for improving fiber utilization. J Dairy Sci. 102:5726-5755.

Aditya HB, Mahlia TMI, Chong WT, Nur H, Sebayang. AH. 2016. Second generation biothermal production: A critical review. Renew Sustain Energy Rev. 66:631-653.

Agbor VB, Cicek N, Sparling R, Berlin A, Levin DB. 2011. Biomass pretreatment: fundamentals toward application. Biotechnol Adv. 2:675-685.

Ahmadi F, Zamiri MJ, Khorvash M, Ziaee E, Polikarpov I. 2016. Pre-treatment of sugarcane bagasse with a combination of sodium hydroxide and lime for improving the ruminal degradability: optimization of process parameters using response surface methodology. J Appl Anim Res. 44:287-296.

Akram MZ, Firincioglu SY. 2019. The use of agricultural crop residues as alternatives to conventional feedstuffs for ruminants: A Review. Eurasian J Agric Res. 3:58-66.

Alexandratos N, Bruinsma J. 2012. Wold agriculture toward 2030/2050 the revision 2012. Food Agricultural Organization United Nations. 146. doi: 10.1016/S0264.8377(03)00047-4.

Arora DS, Sharma RK, Chandra P. 2011. Biodelignification of wheat straw and its effect on in q vitro digestibility and antioxidant properties. Int Biodeteriotation Biodegradation. 65:352-358.

Balan V. 2014. Current challenges in commercially producing biofuel from lignocellulosic biomass. ISRN Biotechnology. Article ID 463074. doi: 10.1155/2014/463074.

Barlianti V, Hendarsyah DH, Abimanyu.H. 2015. Effects of alkaline pretreatments s on q properties of lignocellulosic oil palm waste. Proced Chem. 16:195-201.

Behera S, Dahnum, Arora R, Nandhagopal N, Kumar S. 2014. Important of chemical for bioconversion of lignocellulosic bimass. Renew Sustain Energy Rev. 36:1-106.

Bhat SM, Shilpa. 2015. Lignocellulosic feestock conversion, inhibitor detoxification and cellulosic hydrolysis-a review. Biofuels. doi: 10.1080/17597269.2014.1003702.

Blűmmel M, Homann-Kee TS, Valbuena D, Duncan AJ, Herrero M. 2013. Biomass in crop livestock system in the context of the livestock revolution. Secheresse. 24:330-339. doi: 10.1684/sec.2013.0403.

Blűmmel M, Steele B, Dale BE. 2014. Opportunities from second generation biofuel technologies for upgrading lignocellulosic biomass for livestock feed. CAB Reviews. Vol. 9 No. 041.

[BPS] Badan Pusat Statistik. 2020. Luas panen dan produksi padi di Indonesia 2019. Jakarta (Indonesia): Badan Pusat Statistik. 333 hlm.

Casperson BA, Wertz-Lutz AE, Dunn JL, Donkin SS. 2018. Inclusion of calcium hydroxide- treated corn stover as a partial forage replacement in diets for lactating dairy cows. J Dairy Sci. 101:2027–2036.

Chanjula P, Petcharat V, Cherdthong A. 2018. Rumen characteristics and feed utilization in goats fed with biologically treated oil palm fronds as roughage in a total mixed ration. South Afr J Anim Sci. 48:1049-1056.

De Moraes Rocha GJ, Nascimento VM, Goncalves AR, Silva VFN, Martin C. 2015. Influence of mixed sugarcane bagasse samples evaluated by elemental and physical chemical composition. Ind Crops Prod. 64:52–58.

Fariani A, Abrar A, Muslim G, Warly L. 2015. Suplementation of fermented palm press fibre on digestibility of rice straw and rumen bacteria profile. Pak J Nutr. 14:80-83.

Falls M, Meysing D, Liang C, Karim MN, Carstens G, Tedeschi LO, Holtzapple MT. 2017. Development of highly digestible animal feed from lignocellulosic biomass Part 2: Oxidative lime pretreatment (OLP) and shock treatment of corn stover. Transl Anim Sci. 1:215–220.

Financiea R, Moniruzzamana M, Uemuraa Y. 2016. Enhanced enzymatic delignification of oil palm biomass with ionic liquid pretreatment . Biochem. Engineering J. 110:1-7.

Ginting SP, Simanihuruk K, Tarigan A, Pond KR. 2018. Nutritional support for small ruminant development based on oil palm by-products. Wartazoa. 28:189-198.

Guerriero G, Hausman J-F, Strauss J, Ertan H, Siddiqui KS. 2016. Lignocellulosic biomass: Biosynthesis, degradation and industrial utilization. Eng Life Sci. 16:1-16.

Guilherme AA, Dantas PVF, Soares JCJ, dos Santos ES, Fernandes FAN, de Macedo GR. 2017. Pretreatment and enzyme hydrolysis of sugar cane bagasse aiming at the enhancement of the yield of glucose and xylose. Braz J Chem Engineering. 34:934-947.

Hashim R, Nadhari WNAW, Sulaiman O, Kawamura F, Hiziroglu, Sato SM, Sugimoto T, Seng TG, Tanaka R. 2011. Characterization of raw materials and manufactured binderless particle board from oil palm biomass. Materials and Design. 32:246-254.

Hassim HA, Lourenco M, Goh YM, Baars JJP, Flevez V. 2012. Rumen degradation of oil palm fronds is improved through pre-digestion with white rot fungi but not through supplementation with yeast or enzymes. Can J Anim Sci. 92:79-87.

Huang YF, Chiueh PT, Lo SL. 2016. A review on microwave pyrolysis of lignocellulosic biomass. Sustain Environ Res. 26:103-109.

Ichwan M, Son TW. 2011. Study on organosolv pulping methods of oil palm biomass. In: International Seminar on Chemistry. p. 364-370.

Intasit R, Yeesang J, Cheirsilp B. 2019. Biological pretreatment of empty fruit bunch (EFB) using oleaginous Aspergillus tubingensis TSIP9. J Water Environ Technol. 17:244–250.

Jonathan SG, Okorie AN, Garuba EO, Babayemi OJ. 2012. Bioconversion of sorghum stalk and rice straw into value added ruminant feed using Pleurotus pulmonarius. Nat Sci. 10:10-16.

Karunanithy V, Muthukumarappan K. 2011. Optimizing extrusion pretreatment and big blustem parameters for enzymatic hydrolysis to produce biofuel using response surface methodology. Int J Agric Biol Eng. 4:61-74.

Kholif AE, Khattab HM, El-Shewy AA, Salem AZM, Kholif AM, El-Sayed MM, Gado HM, Mariezcurrena MD. 2014. Nutrient digestibility, ruminal fermentation activities, serum parameters and milk production and composition of lactating goats fed diets containing rice straw treated with Pleurotus ostreatus. Asian Australas J Anim Sci. 3:357-364.

Kristiani A, Abimanyu H, Setiawan AH, Sudiyarmanto, Aulia F. 2013. Effect of pretreatment process by using diluted acid to characteristic of oil palm’s frond. Energy Procedia. 32:183-189.

Kucharska K, Rybarczyk P, Holowacz I, Lukajtis R, Glinka M, Kaminski M. 2018. Pretreatment of lignocellulosic materials as substrate for fermentation processes. Molecules. 23:2937-2968.

Kumar AK, Sharma S. 2017. Recent updates on different methods of pretreatment of lignocellulosic feedstocks: A review. Bioresour Bioprocess. 4:7-26.

Laconi EB, Jayanegara A. 2015. Improving nutritional quality of cocoa pod (Theobroma cacao) through chemical and biological treatments for ruminant feeding: in vitro and in vivo evaluation. Asian Australas J Anim Sci. 28:343-350.

Latif AB, Harun S, Sajab MS, Markom M, Jahim JM. 2018. Ammonia-based pretreatment for lignocellulosic biomass conversion-An overview. J Eng Sci Technol. 13:1595-1620.

Lee J, Jeffries TW. 2011. Efficiencies of acid catalysts in the hydrolysis of lignocellulosic biomass over a range of combined severity factors. Biosour Technol. 102:5884-5890.

Lee JC, Houtman J, Kim H, Choi I, Jeffries TW. 2011. Scale-up study of oxalic acid pretreatment g of agricultural lignocellulosic biomass for the production of bioethanol. Biores Technol. 102:7451-7456.

Lini FZ, Widjaja T, Hendrianie N, Altway A, Nurkhamidah S, Tansil Y. 2018. The effect of organosolv pretreatment on optimization of hydrolysis process to produce the reducing sugar. MATEC Web of Conferences 154, 01022. The 2nd International Conference on Engineering and Technology for Sustainable Development. 7 p.

Lucas M, Hanson SK, Wagner GL, Kimball DB, Rector KD. 2012. Evidence for room temperature delignification of wood using hydrogen peroxide and manganese acetate as catalyst. Bioresour Technol. 11:174-180.

Mafa MS, Malgas S, Bhattacharya A, Rashamuse K, Pletschke BI. 2020. The effects of alkaline pretreatment on agricultural biomass (corncob and sweet sorghum bagasse) and their hydrolysis by a termite-derived enzyme cocktail. Agronomy. 10:1211. doi: 10.3390/agronomy10081211.

Mahesh MS, Mohini M. 2013. Biological treatment of crop residues for ruminant feeding: A review. Afr J Biotechnol. 12:4221-4231.

Makarim AK, Sumarno, Suyamto. 2007. Jerami padi: pengelolaan dan pemanfaatan. Bogor (Indonesia): Pusat Penelitian dan Pengembangan Tanaman Pakan. Badan Litbang Pertanian, Kementerian Pertanian. 52 p.

Malik K, Tokkas J, Anand RC, Kumari. 2015. Pretreated rice straw as an improved fodder for ruminants-An overview. J Appl Nat Sci. 7:514-520.

Maryana R, Ma'rifatun D, Wheni A, Satriyo KW, Rizal WA. 2014. Alkaline pretreatment on sugarcane bagasse for bioethanol production. Energy Procedia 47:250-254.

Metri Y, Warly L, Suyitman. 2018. Biodegradation of lignin by white rot fungi (Pleurotus ostreatus) to decrease the fibre components in the palm midrib. Pak J Nut. 17:71-75.

Mor P, Bals B, AK Tyagi, Tyagi FN, Kumar S, Bringi V, Vande Haar M. 2018. Effect of ammonia fiber expansion on the available energy content of wheat straw fed to lactating cattle and buffalo in India. J Dairy Sci. 101:7990-8003

Mor P, Bals B, Kumar S, Tyagi N, Reen JK, Tyagi B, Choudhury PK, Tyagi AK. 2019. Influence of replacing concentrate mixture with AFEX pellets on rumen fermentation, blood metabolites and acetamide content in the rumen of crossbred (Alpine x Beetle) female goats. Small Rumin Res. 170:109-115.

Mottet A, de Haan C, Falcucci A, Tempio G, Opio C, Gerber P. 2017. Livestock: On our plates or eating at our table? A new analysis of the feed/food debate. Global Food Security. doi: 10.1016/j.gfs.2017.01.001.

Muscat A, de Olde EM, de Boer IJM, Ripoll-Bosc R. 2019. The battle for biomass: A systematic review of food-feed-fuel competition. Global Food Security. doi: 10.1016/j.gfs.2019.10033.

Mustabi J, Wedawati, Armayanti AK. 2018. Improving quality and digestibility of cocoa pod with white rot fungi. IOP Conf Series: Earth and Environmental Science 157. doi:10.1088/1755-1315/157/1/012002.

Mokomele T, da Costa Sousa L, Bals B, Balan V, Goosen N, Dale BE, Grogens JF.2018. Using steam explosion or AFEX to produce animal feed in a biorefinery based on sugarcane residues. Biofuel Bioproduct Biorefining. 12:978-996.

Montgomery LFR, Bochmann G. 2014. pretreatment of feedstock for enhanced biogas production. Baxter D, editor. IEA Bioenergy. 24 p.

Nayan N, Sonnenberg ASM, Hendriks WH, Cone JW. 2018. Screening of white-rot fungi for bioprocessing of wheat straw into ruminant feed. J Appl Microbiol. doi: 10.1111/jam.13894.

Nazir N, Novelina, E. Juita, C. Amelia, Fatli R. 2016. Optimization of pre-treatment process of cocoa pod husk using various chemical solvents. Int J Adv Sci Eng Information Technol. 6:403-409.

Nazratul N, Rakib FMY, Zailan MRM, Yaakub H. 2019. Nutritive composition of oil palm empty fruit bunch fibers treated with mycelia culture of Lingzhi (Ganoderma lucidum) as a potential ruminant feedstuff. Mal J Anim Sci. 22:35-46.

Nitsos R, Rova U. 2017. Organosolv fractionation of softwood biomass for biofuel and biorefinary application. Energies. 11:50.

Owen H, Smith T, Makkar HPS. 2012. Succes and failure with animal nutrition practices and technologies in developing countries. A synthesis of an FAO e-conference. Anim Feed Sci Technol. 174:211-226.

Panahi HKS, Dehhaghi M, Aghbashlo M, Karimi K, Tabatabaei M. 2020. Conversion of residues from agro-food industry into bioethanol in Iran: An under-valued biofuel additive to phase out MTBE in gasoline. Renewable Energy. 145:699-710.

Puastuti W, Yulistiani D, Mathius IW, Giyai F, Dihansih E. 2010. Ransum berbasis kulit buah kakao yang disuplementasi Zn organik: respon pertumbuhan pada domba. JITV. 16:269-277.

Puastuti W, Yulistiani D. 2011. Utilization of urea and fish meal in cocoa pod silage based rations to increase the growth of Etawah crossbred goats. In: Ali A, Kamil KA, Alimon AR, Orskov, Zentek J, Tanuwiria UH, editors. Proceeding 2nd International Seminar AINI Feed Safety Health Food. Bandung, July 6-7th, 2011. Bandung (Indonesia): Padjadjaran University. p. 463-469.

Rizal NA, Ibrahim MF, Zakaria M, Bahrin EK, Abd Aziz S, Hassan M. 2018. Combination of superheated steam with laccase pretreatment together with size reduction to enhance enxymatic hydrolysis of oil palm biomass. Molecule. 23:811-817.

Rusli ND, Azmi MA, Mat K, Hasnita CH, Wan-Zahari M, Azhar M, Zamri-Saad K, Hassim HA. 2019. The effect of physical and biological pre-treatments of oil palm fronds on in vitro ruminal degradability. Pertanika J Trop Agric Sci. 42:791-805.

Saha BC, Cotta MA. 2014. Alkaline peroxide pretreatment of corn stover for enzymatic saccharification and ethanol production. Industrial Biotechnol. 10:34-41.

Schiere JB. 2010. Cereal straw as ruminant feeds: Problem and prospects revisited. Anim Nutr Feed Technol. 10S:127-153.

Sharma RK, Arora DS. 2014. Bioprocessing of wheat and paddy straw for their nutritional up-grading. Bioprocess Biosyst Eng. 37:1437-1445.

Shreck AL, Nuttelman BL, Harding JL, Griffin WA, Erickson GE., Klopfenstein TJ, Cecava MJ. 2015. Digestibility and performance of steers fed low-quality crop residues treated with calcium oxide to partially replace corn in distillers grains finishing diets. J Anim Sci. 93:661–671.

Sirisan V, Pattarajinda V, Duanyai S. 2019. Effect of feeding sugarcane bagasse treated with alkali and white rot fungi on dairy cow performance, blood metabolite and ruminant fermentation. Indian J Anim Res. doi: 10.18805/ijar.B-1084 .

Swain MR, Krishnan C. 2015. Improved conversion of rice straw to ethanol and xylitol by combination of moderate temperature ammonia pretreatment and and sequencing fermentation using Candida tropicalis. Industr Crops Prod. 77:1039-1046.

Talaiekhozani A, Rezania S. 2020. A critical review on the various pretreatment technologies of lignocellulosic materials. J Env Treatment Tech. 8:925-935.

Tan,H.T, Lee KT, Mohamed AR. 2011. pretreatment of lignocellulosic palm biomass using a solvent-ionic liquid [BMIM] Cl for glucose recovery: An optimization study using respons surface methodology. Carbohydr Polym. 83:1862-1868.

Tao L, Zhang LX, Tu Y, Zhang NF, Si BW, Ma T, Diao QY. 2016. Improving thr in situ ruminal degradability of maize stalk using inoculant in dorper x thin-tailebhan crossed ewes. Small Rumin Res. 144:119-125.

Uppugundla N, da Costa Sousa L, Chundawat SPS, Yu, Simmons XB, Singh S, Gao X, Kumar R, Wyman C.E, Dale BE, Balan V. 2014. A comparative study of ethanol production using dilute acid, ionic liquid and AFEX™ pretreated corn stover. Biotechnol Biofuels. 7:72-85.

Valbuena D, Sabine HT, Erenstein O, Teufel N, Duncan A, Abdoulaye T, Swain B, Kekonnen K, Germaine I, Gérard B. 2015. Identifying determinants, pressure and trade-off of crop residue use in mixed smallholder farms in Sub-Saharan Africa and South Asia. Q Agric Syst. 134:107-118.

Van Kuijk SJA, Sonnenberg ASM, Baars JJP, Hendricks WH, Cone JW.2015. Fungal treated lignocellulosic biomass as ruminant feed ingredient: A Review. Biotechnol Adv. 33:191-202.

Van Zanten HHE, van Ittersum MK, De Boer IJM. 2019. The role of farm animals in a circular food system. Global Food Security. 21:18-22.

Wang K, Nan X, Tong J, Zha G, Jiang L, Xiong B. 2020. Steam explosion pretreatment changes ruminal fermentation in vitro of corn stover by shifting archaeal and bacterial community structure. Front Microbiol. 11:1-10.

Wang Y, McAllister TA, Lora JH. 2017. Effect of purified lignin on in vitro rumen metabolism and growth performance of fee lot cattle. Asian-Austral J Anim Sci. 30:392-399.

Widiawati Y, Matondang RH, Rahayu CT, Hidayat IR, Ramadhan BA, Fauzi MI. 2019. Bahan pakan ruminansia berbasis produk samping/biomassa industri perkebunan. Bogor (Indonesia): IPB Press. 226 p.

Wu H, Zhou Z, Yang Y, Meng Q. 2020. Effect of steam explosion of oil palm frond and empty fruit bunch on nutrient composition and ruminal fermentation characteristics. Trop Anim Health Prod. 52:1223–1228.

Yulistiani D, Puastuti W. 2012. Produk samping pertanian untuk pakan dan prediksi emisi gas metana pada ruminansia. Dalam: Potensi bahan pakan lokal untuk menurunkan gas metana ternak ruminansia. Jakarta (Indonesia): IAARD Press.

Zakaria MR, Hirata S, Hassan MA. 2014. Combine pretreatment using alkaline hydrothermal and ball milling to enhance enzymatic hydrolysis of oil palm mesocarpfibre. Bioresour Technol. 169:236-243.


  • There are currently no refbacks.

Copyright (c)  2021 WARTAZOA. Indonesian Bulletin of Animal and Veterinary Sciences

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.