Utilization of Molecular Marker to Improve Cattle Carcass Quality in Indonesia

M. Ikhsan Shiddieqy, Nurul Pratiwi, Bayu Dewantoro Putro Soewandi

Abstract

Cattle is one of the commodities that have a national priority to achieve self-sufficiency in animal protein food for the Indonesian people. Beside beef sufficiency, demand on good quality meat in Indonesia is also increasing. Good quality carcass with lower fat content can give higher economic value. The purpose of this paper is to discuss the use of molecular markers to improve the quality of beef cattle carcass. Heritability value in carcass characteristic is low to moderate value, but it can be increased by selection using certain molecular markers. Several genes have been identified and correlated with carcass quality in several breed of cattle. Study in Bali cattle showed that the Calpain (CAPN1) and Calpastatin (CASTN) genes could be used as molecular markers to select Bali cattle with higher quality carcass because these genes were associated with carcass quality traits. In conclusion that Calpain (CAPN1) and Calpastatin (CASTN) genes can be used for local beef cattle selection toward better carcass quality and have opportunity to be utilized to improve carcass quality of other beef cattle breeds in Indonesia.

Keywords

Utilization; molecular markers; beef cattle; carcass

Full Text:

PDF

References

Agung PP, Anwar S, Putra WPB, Zein MSA, Wulandari AS, Said S, Sudiro A. 2017. Association of growth hormone (GH) gene polymorphism with growth and carcass in Sumba Ongole (SO) cattle. J Indones Trop Anim Agric. 42:153-159.

Agung PP, Anwar S, Wulandari AS, Sudiro A, Said S, Tappa B. 2015. the potency of Sumba Ongole (SO) Cattle: a study of genetic characterization and carcass productivity. J Indones Trop Anim Agric. 40:71-78.

Alwiyah. 2016. Identifikasi keragaman gen DGAT1 dan SCD serta asosiasinya terhadap kualitas karkas pada sapi Bali [Tesis]. [Bogor (Indonesia)]: Institut Pertanian Bogor.

Anwar S, Wulandari AS, Putra WPB, Said S. 2019. The favorable alleles of AKIRIN2:c.*188G>A, EDG1:c.-312A>G and TTN:g.231054C>T as candidate markers for high-marbling are very low in Bali cattle. Biodiversitas. 20:965-970.

Arnold H, Della-Fera M, Baile C. 2001. Review of myostatin history, physiology and applications. Int Arch Biosci. 1:1014-1022.

Astuti M. 2004. Potensi dan keragaman sumberdaya genetik sapi Peranakan Ongole (PO). Wartazoa. 14:30-39.

Barendse W, Bunch R, Thomas M, Armitage S, Baud S, Donaldson N. 2004. The TG5 thyroglobulin gene test for a marbling quantitative trait loci evaluated in feedlot cattle. Aust J Exp Agric. 44:669-674.

Bentzinger CF, Wang YX, Rudnicki MA. 2012. Building muscle: molecular regulation of myogenesis. Cold Spring Harb Perspect Biol. 4:1-16.

Bhuiyan MSA, Kim HJ, Lee DH, Lee SH, Cho SH, Yang BS, Kim SD, Lee SH. 2017. Genetic parameters of carcass and meat quality traits in different muscles (Longissimus dorsi and semimembranosus) of Hanwoo (Korean cattle). J Anim Sci. 95:3359-3369.

Bhuiyan MSA, Kim NK, Cho YM, Yoon D, Kim KS, Jeon JT, Lee JH. 2009. Identification of SNPs in MYOD gene family and their associations with carcass traits in cattle. Livest Sci. 126:292-297.

Brito LF, Clarke SM, McEwan JC, Miller SP, Pickering NK, Bain WE, Dodds KG, Sargolzaei M, Schenkel FS. 2017. Prediction of genomic breeding values for growth, carcass and meat quality traits in a multi-breed sheep population using a HD SNP chip. BMC Genet. 18:1-17.

Caetano SL, Savegnago RP, Boligon AA, Ramos SB, Chud TCS, LÔbo RB, Munari DP. 2013. Estimates of genetic parameters for carcass, growth and reproductive traits in Nellore cattle. Livest Sci.

:1-7.

Casas E, White SN, Riley DG, Smith TPL, Brennemant RA, Olson TA, Johnson DD, Coleman SW, Bennett GL, Chase CC. 2005. Assessment of single nucleotide polymorphisms in genes residing on chromosomes 14 and 29 for association with carcass composition traits in Bos indicus cattle. J Anim Sci. 83:13-19.

Chung ER, Kim WT. 2005. Association of SNP marker in IGF-I and MYF5 candidate genes with growth traits in Korean cattle. Asian-Australasian J Anim Sci. 18:1061-1065.

Deaton AM, Bird A. 2011. CpG islands and the regulation of transcription. Genes Dev. 25:1010-1022.

Doherty R, Farrelly CO, Meade KG. 2014. Comparative epigenetics: Relevance to the regulation of production and health traits in cattle. Anim Genet. 45:3–14.

Elmasry G, Barbin D, Sun DW, Allen P. 2012. Meat quality evaluation by hyperspectral imaging technique: An overview. Critic Rev Food Sci Nutr. 52:689-711. doi: 10.1080/10408398.2010.507908.

Fatmawati, Rostin, Baso JN. 2016. Faktor-faktor yang mempengaruhi permintaan daging sapi di indonesia. J Ekon. 1:128-134.

Francetic T, Li Q. 2011. Skeletal myogenesis and Myf5 activation. Transcription. 2:109-114.

Furqon A. 2012. Identifikasi Keragaman Gen Calpastatin (CAST|AluI) pada bangsa sapi Indonesia dengan metode PCR RFLP [Skripsi]. [Bogor (Indonesia): Institut Pertanian Bogor.

Goll DE, Thompson VF, Li H, Wei W, Cong J. 2003. The calpain system. Physiol Rev. 83:731-801.

Gui LS, Raza SHA, Garcia M, Sun YG, Ullah I, Han YC. 2018. Genetic variants in the SIRT6 transcriptional regulatory region affect gene activity and carcass quality traits in indigenous Chinese beef cattle (Bos taurus). BMC Genomics. 19:785.

Guidolin DGF, Grupioni NV, Chud TCS, Urbinati I, Lôbo RB, Bezerra LaF, Paz CCP, Munari DP. 2010. Genetic Association For Growth, Reproductive And Carcass Traits In Guzerá Beef Cattle. In: Proceedings of 9th World Congress on Genetics Applied to Livestock Production. Leipzig (Germany): World Congress on Genetics Applied to Livestock Production Digital Archive. p. 1-4.

Hafid H, Rugiyah N. 2009. Persentase karkas sapi Bali pada berbagai berat badan dan lama pemuasaan sebelum pemotongan. Dalam: Prosiding Seminar Nasional Teknologi Peternakan dan Veteriner. Bogor (Indonesia): Puslitbangnak. hlm. 77-85.

Hilmia N, Noor RR, Sumantri C, Priyanto R, Gurnadi E. 2015. Hubungan keragaman gen leptin dengan kualitas fisik daging sapi lokal di Ciamis. J Ilmu Ternak. 15:53-60.

Hilmia N, Noor RR, Sumantri C, Priyanto R, Gurnadi E. 2016. Analisis hubungan keragaman gen SCD1 (Stearoyl CoA Desaturase) dengan komposisi asam lemak daging sapi lokal di Ciamis. J Ilmu Peternak. 16:28-34.

Hirwa C d’Andre, Wallace P, Shen X, Nie Q, Yang G, Zhang X. 2011. Genes related to economically important traits in beef cattle. Asian J Anim Sci. 5:34-35.

Hou G-Y, Yuan Z-R, Zhou H-L, Zhang L-P, Li J-Y, Xu XG, Wang D-J, Gao H-J, Xu S-Z. 2011a. Association analysis of thyroglobulin gene variants with carcass and meat quality traits in beef cattle. Mol Biol Rep. 38:4705-4708.

Hou G, Huang M, Gao X, Li J, Gao H, Ren H, Xu S. 2011b. Association of Calpain 1 (CAPN1) and HRSP12 allelic variants in beef cattle with carcass traits. J Biotechnol. 10:13714-13718.

Humblot P, Le Bourhis D, Fritz S, Colleau JJ, Gonzalez C, Guyader Joly C, Malafosse A, Heyman Y, Amigues Y, Tissier M, Ponsart C. 2010. Reproductive Technologies and Genomic Selection in Cattle. Vet Med Int. 2010:1-8.

Illingworth RS, Gruenewald-Schneider U, Webb S, Kerr ARW, James KD, Turner DJ, Smith C, Harrison DJ, Andrews R, Bird AP. 2010. Orphan CpG Islands Identify numerous conserved promoters in the mammalian genome. PLoS Genet. 6:1-15.

Julianty L. 2013. Sifat karkas dan non karkas sapi silangan lokal Friesian Holstein serta kerbau Rawa jantan [Skripsi]. [Bogor (Indonesia)]: Institut Pertanian Bogor.

Kause A, Mikkola L, Strandén I, Sirkko K. 2014. Genetic parameters for carcass weight, conformation and fat in five beef cattle breeds. Animal. 9:35-42.

Khasanah H. 2016. Kajian keragaman gen MYF5 dan MSTN serta asosiasinya terhadap sifat pertumbuhan dan perdagingan pada sapi Bali [Tesis]. [Bogor (Indonesia)]: Institut Pertanian Bogor.

Kulig H, Kmieć M. 2009. Association between leptin gene polymorphisms and growth traits in Limousin cattle. Russ J Genet. 45:738-741.

Li C, Basarab J, Snelling WM, Benkel B, Murdoch B, Hansen C, Moore SS. 2004. Assessment of positional candidate genes myf5 and igf1 for growth on bovine chromosome 5 in commercial lines of Bos taurus. J Anim Sci. 82:1-7.

Li J, Zhang L-P, Gan Q-F, Li J-Y, Gao H-J, Yuan Z-R, Gao X, Chen J-B, Xu S-Z. 2010. Association of CAST gene polymorphisms with carcass and meat quality traits in Yanbian cattle of China. Mol Biol Rep. 40:1875-1881.

Li X, Ekerljung M, Lundström K, Lundén A. 2013. Association of polymorphisms at DGAT1, leptin, SCD1, CAPN1 and CAST genes with color, marbling and water holding capacity in meat from beef cattle populations in Sweden. Meat Sci. 94:153-158.

Lourenco DAL, Tsuruta S, Fragomeni BO, Masuda Y, Aguilar I, Legarra A, Bertrand JK, Amen TS, Wang L, Moser DW, Misztal I. 2015. Genetic evaluation using single-step genomic best linear unbiased predictor in American Angus. J Anim Sci. 93:2653-2662.

Luo J, Sun X, Cormack BP, Boeke JD. 2018. Karyotype engineering by chromosome fusion leads to reproductive isolation in yeast. Nature. 560:392-396.

Meuwissen T, Hayes B, Goddard M. 2016. Genomic selection: A paradigm shift in animal breeding. Anim Front. 6:6-14.

Michal JJ, Zhang ZW, Gaskins CT, Jiang Z. 2006. The bovine fatty acid binding protein 4 gene is significantly associated with marbling and subcutaneous fat depth in Wagyu x Limousin F2 crosses. Anim Genet. 37:400-402.

Miller MF, Huffman KL, Gilbert SY, Hamman LL, Ramsey CB. 1995. Retail consumer acceptance of beef tenderized with calcium chloride. J Anim Sci. 73:2308-2314.

Miyake M, Hayashi S, Taketa Y, Iwasaki S, Watanabe K, Ohwada S, Aso H, Yamaguchi T. 2010. Myostatin down-regulates the IGF-2 expression via ALK-Smad signaling during myogenesis in cattle. Anim Sci J. 81:223-229.

Mizoshita K, Watanabe T, Hayashi H, Kubota C, Yamakuchi H, Todoroki J, Sugimoto Y. 2004. Quantitative trait loci analysis for growth and carcass traits in a half-sib family of purebred Japanese Black (Wagyu) cattle. J Anim Sci. 82:3415-3420.

Mrode R, Ojango JMK, Okeyo AM, Mwacharo JM. 2019. Genomic selection and use of molecular tools in breeding programs for indigenous and crossbred cattle in developing countries: Current status and future prospects. Front Genet. 9:694. doi: 10.3389/fgene.2018.00694.

Muroya S, Watanabe K, Hayashi S, Miyake M, Konashi S, Sato Y, Takahashi M, Kawahata S, Yoshikawa Y, Aso H, et al. 2009. Muscle type-specific effect of myostatin deficiency on myogenic regulatory factor expression in adult double-muscled Japanese Shorthorn cattle. Anim Sci J. 80:678-685.

[OECD/FAO] Organisation for Economic Co-operation and Development/Food and Agriculture Organization of the United Nations. 2016. OECD‑FAO agricultural outlook 2016‑2025 [Internet]. [diakses pada 23 November 2018]. Tersedia dari: http://www.fao.org/3/a-i5778e.pdf.

Ohsaki H, Tanaka A, Hoashi S, Sasazaki S, Oyama K, Taniguchi M, Mukai F, Mannen H. 2009. Effect of SCD and SREBP genotypes on fatty acid composition in adipose tissue of Japanese black cattle herds. Anim Sci J. 80:225-232.

Pahar RA. 2008. Faktor-faktor yang mempengaruhi keputusan konsumsi daging sapi rendah lemak (Studi kasus di Supermarket Giant Point Square dan Giant Pondok Gede Jakarta) [Skripsi]. [Bogor (Indonesia)]: Institut Pertanian Bogor.

Pangestu MB. 2018. Karakteristik karkas dan daging sapi Peranakan Ongole dan Brangus pada umur yang berbeda [Skripsi]. [Bogor (Indonesia)]: Institut Pertanian Bogor.

Pannier L, Mullen AM, Hamill RM, Stapleton PC, Sweeney T. 2010. Association analysis of single nucleotide polymorphisms in DGAT1, TG and FABP4 genes and intramuscular fat in crossbred Bos taurus cattle. Meat Sci. 85:515-518.

Peng Y, Dhakal S. 2015. Optical methods and techniques for meat quality inspection. ASABE. 58:1371-1386.

Pereira MC, Cruz GD, Arrigoni MD, Rigueiro AL, Silva J, Carrara TV, Santos PC, Cursino LL, Millen DD. 2016. Relationships of feedlot performance, feeding behavior, rumen morphometrics, and carcass characteristics of Nellore cattle differing in phenotypic residual feed intake. J Anim Sci. 94:4287-4296.

Pinto LF, Ferraz JB, Meirelles F V., Eler JP, Rezende FM, Carvalho ME, Almeida HB, Silva RC. 2010. Association of SNPs on CAPN1 and CAST genes with tenderness in Nellore cattle. Genet Mol Res. 9:1431-1442.

Pintos D, Corva PM. 2011. Association between molecular markers for beef tenderness and growth traits in Argentinian Angus cattle. Anim Genet. 42:329-332.

Pollak EJ. 2005. Application and impact of new genetic technologies on beef cattle breeding: A 'real world' perspective. Aust J Exp Agr. 45. doi: 10.1071/EA05047.

Pratiwi N. 2016. Analisis keragaman gen kalpastatin (cast) dan kalpain-1 (capn1) terhadap karakteristik karkas dan daging pada sapi Bali [Tesis]. [Bogor (Indonesia)]: Institut Pertanian Bogor.

Pratiwi N, Maskur, Priyanto R, Jakaria. 2016. Novel Snp of Calpain-1 (Capn1) gene and its association with carcass and meat characteristics traits in Bali cattle. J Indones Trop Anim Agric. 41:109-116.

Purbowati E, Purnomoadi A, Lestari CMS, Kamiyatun. 2011. Karakteristik karkas sapi Jawa (studi kasus di RPH Brebes, Jawa Tengah). Dalam: Prasetyo LH, Damayanti R, Iskandar S, Herawati T, Priyanto D, Puastuti W, Anggraeni A, Tarigan S, Wardhana AH, Darmayanti NLPI, penyunting. Teknologi Peternakan dan Veteriner untuk Peningkatan Produksi dan Antisipatif terhadap Dampak Perubahan Iklim. Prosiding Seminar Nasional Teknologi Peternakan dan Veteriner. Bogor, 7-8 Juni 2011. Bogor (Indonesia): Puslitbangnak. hlm. 353-361.

Purpranoto I. 2013. Karakteristik karkas dan non karkas sapi potong pada kerangka tubuh yang berbeda [Skripsi]. [Bogor (Indonesia)]: Institut Pertanian Bogor.

Purwono J, Sugyaningsih S, Andryani M. 2014. Analisis keputusan pembelian daging sapi oleh konsumen rumah tangga (kasus: hipermarket Giant Taman Yasmin Bogor). J NeO-Bis. 8:77-92.

Pusat Data dan Sistem Informasi Pertanian. 2015. Outlook komoditas pertanian sub sektoral peternakan daging sapi. Jakarta (Indonesia): Sekretariat Jenderal, Kementerian Pertanian.

Putra WPB, Indriastuti R. 2017. Leptin gene as potential gene for molecular selection on cattle in Indonesia. Wartazoa. 27:105-116.

Putri R, Priyanto R, Gunawan A, Jakaria J. 2015. Association of Calpastatin (CAST) gene with growth traits and carcass characteristics in Bali cattle. Media Peternakan. 38:145-149.

Raza SHA, Gui L, Khan R, Schreurs NM, Xiaoyu W, Wu S, Mei C, Wang L, Ma X, Wei D, et al. 2018. Association between FASN gene polymorphisms ultrasound carcass traits and intramuscular fat in Qinchuan cattle. Gene. 645:55-59.

Reardon W, Mullen AM, Sweeney T, Hamill RM. 2010. Association of polymorphisms in candidate genes with colour, water-holding capacity, and composition traits in bovine M. longissimus and M. semimembranosus. Meat Sci. 86:270-275.

Ríos R, Carneiro I, Arce VM, Devesa J. 2001. Myostatin regulates cell survival during C2C12 myogenesis. Biochem Biophys Res Comm. 280:561-566.

Rotta PP, Do Prado IN, Do Prado RM, Moletta JL, Silva RR, Perotto D. 2009. Carcass characteristics and chemical composition of the Longissimus muscle of Nellore, Caracu and Holstein-Friesian bulls finished in a feedlot. Asian-Australasian J Anim Sci. 22:598-604.

Saatchi M, Schnabel RD, Rolf MM, Taylor JF, Garrick DJ. 2012. Accuracy of direct genomic breeding values for nationally evaluated traits in US Limousin and Simmental beef cattle. Genet Sel Evol. 44:1-10.

Sari EM. 2011. Keragaman genetik gen hormon pertumbuhan (GH) dan hubungannya dengan kualitas karkas pada sapi Aceh [Disertasi]. [Bogor (Indonesia)]: Institut Pertanian Bogor.

Sari EM, Noor RR, Sumantri C, Margawati ET. 2012. Carcass traits association with GH/AluI gene polymorphism in Indonesian Aceh cattle. In: 2nd International Seminar Animal Indonesia. Bogor (Indonesia): Bogor Agricultural University. p. 104-109.

Schenkel F, Miller S. 2006. Association of a single nucleotide polymorphism in the calpastatin gene with carcass and meat quality traits of beef cattle. J Anim Sci. 84:291-299.

Schenkel FS, Miller SP, Ye X, Moore SS, Nkrumah JD, Li C, Yu J, Mandell IB, Wilton JW, Williams JL. 2006. Association of single nucleotide polymorphisms in the leptin gene with carcass and meat quality traits of beef cattle. J Anim Sci. 83:2009-2020.

Shin SC, Heo JP, Chung ER. 2012. Genetic variants of the FABP4 gene are associated with marbling scores and meat quality grades in Hanwoo (Korean cattle). Mol Biol Rep. 39:5323-5330.

Silva DBS, Crispim BA, Silva LE, Oliveira JA, Siqueira F, Seno LO, Grisolia AB. 2014. Genetic variations in the leptin gene associated with growth and carcass traits in Nellore cattle. Genet Mol Res. 13:3002–3012.

Singh U, Deb R, Alyethodi RR, Alex R, Kumar S, Chakraborty S, Dhama K, Sharma A. 2014. Molecular markers and their applications in cattle genetic research: A review. Biomark Genom Med. 6:49-58.

Suryanto E, Bulkaini, Soeparno, Karda IW. 2017. Kualitas karkas, marbling, kolesterol daging dan komponen non karkas sapi Bali yang diberi pakan kulit buah kakao fermentasi. Bul Peternak. 41:72.

Syarifulaya N, Made S, Maskur. 2015. Identifikasi keragaman gen leptin pada sapi Bali dan kambing Kacang. J Ilmu Teknol Peternak Indones. 1:40-46.

Tait CA, L’Abbe´ MR, Smith PM, Rosella LC. 2018. The association between food insecurity and incident type 2 diabetes in Canada: A population-based cohort study. PLoS ONE. 13:e0195962. doi: 10.1371/journal.pone.0195962.

Taniguchi M, Utsugi T, Oyama K, Mannen H, Kobayashi M, Tanabe Y, Ogino A, Tsuji S. 2004. Genotype of stearoyl-CoA desaturase is associated with fatty acid composition in Japanese Black cattle. Mamm Genome. 15:142-148.

Taylor WE, Bhasin S, Artaza J, Byhower F, Azam M, Willard DH Jr, Kull FC Jr, Gonzalez-Cadavid N. 2001. Myostatin inhibits cell proliferation and protein synthesis in C2C12 muscle cells. Am J Physiol Endocrinol Metab. 280:E221-8.

Thomas M, Langley B, Berry C, Sharma M, Kirk S, Bass J, Kambadur R. 2000. Myostatin, a negative regulator of muscle growth, functions by inhibiting myoblast proliferation. J Biol Chem. 275:40235-40243.

Verner J, Humpolıcek P, Knoll A. 2007. Impact of MYOD family genes on pork traits in Large White and Landrace pigs. J Anim Breed Genet. 124:81-85.

Wijaya MA. 2008. Analisis preferensi dalam membeli daging sapi di pasar tradisional kabupaten Purworejo [Skripsi]. [Surakarta (Indonesia)]: Universitas Sebelas Maret.

Wood BJ, Archer JA, Van Der Werf JHJ. 2004. Response to selection in beef cattle using IGF-1 as a selection criterion for residual feed intake under different Australian breeding objectives. Livest Prod Sci. 91:69-81.

Wu XX, Yang ZP, Shi XK, Li JY, Ji DJ, Mao YJ, Chang LL, Gao HJ. 2012. Association of SCD1 and DGAT1 SNPs with the intramuscular fat traits in Chinese Simmental cattle and their distribution in eight Chinese cattle breeds. Mol Biol Rep. 39:1065-1071.

Wyszyńska-Koko J, Pierzchała M, Flisikowski K, Kamyczek M, Rózycki M, Kurył J. 2006. Polymorphisms in coding and regulatory regions of the porcine MYF6 and MYOG genes and expression of the MYF6 gene in m. longissimus dorsi versus productive traits in pigs. J Appl Genet. 47:131-138.

Yuan Z, Li Junya, Li Jiao, Gao X, Gao H, Xu S. 2013. Effects of DGAT1 gene on meat and carcass fatness quality in Chinese commercial cattle. Mol Biol Rep. 40:1947-1954.

Zeng-rong Z, Qing Z, Yi-ping L. 2007. Correlation analysis on single nucleotide polymorphism of CAPNI gene and meat quality and carcass traits in chickens. Agric Sci China. 6:749-754.

Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. 1994. Positional cloning of the mouse obese gene and its human homologue. Nature. 372:425-432.

Zulkharnaim, Jakaria, Noor RR. 2010. Identifikasi keragaman genetik gen reseptor hormon pertumbuhan (GHR|Alu I) pada sapi Bali. Media Peternakan. 33:81-87.

Refbacks

  • There are currently no refbacks.

Copyright (c)  2019 WARTAZOA. Indonesian Bulletin of Animal and Veterinary Sciences

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.