The Utilization of Insects as Feedstuff in Broiler Diet

cecep hidayat


Insect meal is an unconventional feedstuff and is expected to be an alternative protein source in broiler diet in the future, as an impact of high price and a limited supply of a fish meal. The objective of this paper is to describe the potency of insects as a feedstuff in broiler diet. Some types of insects, i.e., bees, flies, crickets, grasshoppers, termites, ants, and cockroaches have the potential to be a feedstuff protein source. Several studies reported that insect has high protein content (10.3-76.2%). The use of insects as feedstuffs in broiler diet is constrained by several limiting factors, i.e. the presence of chitin, high crude fat content, and the presence of contaminants. Processing insects before being used as feedstuffs is necessary. Separation of chitin and crude fat content are highly recommended before using insect as protein source feedstuff in broiler diet. The use of insects in a broiler diet ranges from 4 to 29.65% depending on the type of insect, life phase of insect and the type of processing. Research and development to increase insect utilization in broiler diet are still needed.


Broiler; insect; diet

Full Text:



Al-Qazzaz MFA, Ismail D, Akit H, Idris LH. 2016. Effect of using insect larvae meal as a complete protein source on quality and productivity characteristics of laying hens. R Bras Zootec. 45:518-523.

Amza N, Tamiru M. 2017. Insects as an option to conventional protein sources in animal feed: A review paper. Glob J Sci Front Res D Agric Vet. 17:12.

Arrese EL, Soulages JL. 2010. Insect fat body: Energy, metabolism, and regulation. Annu Rev Entomol. 55:207-225.

Belluco S, Losasso M, Alonzi CC, Paoletti MG, Ricci A. 2013. Edible insects in a food safety and nutritional perspective: A critical review. Compr Rev Food Sci Food Saf. 12:296-313.

Biasato I, Gasco L, De Marco M, Renna M, Rotolo L, Dabbou S, Capucchio MT, Biasibetti E, Tarantola M, Sterpone L, et al. 2018. Yellow mealworm larvae (Tenebrio molitor) inclusion in diets for male broiler chickens: Effects on growth performance, gut morphology, and histological findings. Poult Sci. 97:540-548.

Bosch G, Zhang S, Oonincx DGAB, Hendriks WH. 2014. Protein quality of insects as potential ingredients for dog and cat foods. J Nut Sci. 3:1-4.

Bovera F, Loponte R, Marono S, Piccolo G, Parisi G, Iaconisi V, Gaco L, Nizza A. 2016. Use of Tenebrio molitor larvae meal as protein source in broiler diet: Effect on growth performance, nutrient digestibility, and carcass and meat traits. J Anim Sci. 94:639-647.

Bovera F, Piccolo G, Gasco L, Marono S, Loponte R, Vassalotti G, Mastellone V, Lombardi P, Attia YA, Nizza A. 2015. Yellow mealworm larvae (Tenebrio molitor L) as possible alternative to soybean meal in broiler diets. Br Poult Sci. 56:569-575.

Brah N, Houndonougbo FM, Issa S. 2018. Grasshopper meal (Ornithacris cavroisi) in broiler diets in Niger: Bioeconomic performance. Int J Poult Sci. 17:126-133.

BSN. 2013. Standar nasional Indonesia 2013. Jakarta (Indonesia): Badan Standar Nasional.

Caligiani A, Marseglia A, Leni G, Baldassarre S, Maistrello L, Dossena A, Sforza S. 2017. Composition of black soldier fly prepupae and systematic approaches for extraction and fractionation of proteins, lipids and chitin. Food Res Int. 105:812-820.

Charlton, Dickinson M, Wakefield ME, Fitches E, Kenis M, Han R, Zhu F, Kone N, Grant M, Devic E, et al. 2015. Exploring the chemical safety of fly larvae as a source of protein for animal feed. J Insects Food Feed. 1:7-16.

De Coca Sinova A, Valencia DG, Jimenez-Moreno E, Lazaro R, Mateos GG. 2008. Apparent ileal digestibility of energy, nitrogen, and amino acids of soybean meals of different origin in broilers. Poult Sci. 87:2613-2623.

De Marco M, Martinez S, Hernandez F, Madrid J, Gai F, Rotolo L, Belforti M, Bergero D, Katz H, Dabbou S, et al. 2015. Nutritional value of two insect larval meals (Tenebrio molitor and Hermetia illucens) for broiler chickens: Apparent nutrient digestibility. apparent ileal amino acid digestibility and apparent metabolizable energy. Anim Feed Sci Technol. 209:211-218.

Ditjen PKH. 2017. Statistik peternakan dan kesehatan hewan 2017. Jakarta (Indonesia): Direktorat Jenderal Peternakan dan Kesehatan Hewan.

Erkan N, Ozden O. 2011. A preliminary study of amino acid and mineral profi lesof important and estimable 21 seafood species. Br Food J. 4:457-569.

Fasakin EA, Balogun AM, Ajayi OO. 2003. Evaluation of full-fat and defatted maggot meals in the feeding of clariid catfish Clarias gariepinus fingerlings. Aquac Res. 34:733-738.

Fauzi RUA, Sari ERN. 2018. Analisis usaha budidaya maggot sebagai alternatif pakan lele. J Teknol Manaj Agroindustri. 7:39-46.

Fink-Gremmels J. 2012. Animal feed contamination: Effects on livestock and food safety. 1st ed. Cambridge (UK): Woodhead Publishing.

Finke MD. 2007. Estimate of chitin in raw whole insects. Zoo Biol. 26:105-115.

Finke MD, Rojo S, Roos N, van Huis A, Yen AL. 2015. The European food safety authority scientific opinion on a risk profile related to production and consumption of insects as food and feed. J Insects Food Feed. 1:245-247.

Foottit RG, Adler PH. 2009. Insect biodiversity: Science and society. New Jersey (US): Wiley-Blackwell.

Ghosh S, Jung C, Meyer-Rochow VB. 2016. Nutritional value and chemical composition of larvae, pupae, and adults of worker honey bee. Apis mellifera ligustica as a sustainable food source. J Asia-Pacific Entomol. 19:487-495.

Grau T, Vilcinskas A, Joop G. 2017. Sustainable farming of the mealworm Tenebrio molitor for the production of food and feed. Z Naturforsch C. 72:337-349.

Hackewitz L V. 2018. The house cricket Acheta domesticus, a potential source of protein for human consumption. Uppsala (Sweden): Faculty of Natural Resources and Agricultural Sciences. Sveriges lantbruksuniversitet Swedish University of Agricultural Sciences.

Hall HN, Masey O ’Neill H V, Scholey D, Burton E, Dickinson M, Fitches EC. 2018. Amino acid digestibility of larval meal (Musca domestica) for broiler chickens. Poult Sci. 97:1290-1297.

Harlystiarini. 2017. Pemanfaatan tepung larva black soldier fly (Hermetia illucens) sebagai sumber protein pengganti tepung ikan pada ransum puyuh petelur (Cortunix cortunix japonica) [Thesis]. [Bogor (Indonesia)]: Institut Pertanian Bogor.

Hossain M, Blair R. 2007. Chitin utilisation by broilers and its effect on body composition and blood metabolites. Brit Poult Sci. 48:33-38.

Ijaiya AT, Eko EO. 2009. Effect of replacing dietary fish meal with silkworm (Anaphe infracta) caterpillar meal on performance, carcass characteristics and haematological parameters of finishing broiler chicken. Pak J Nut. 8:850-855.

INRA-CIRAD-AFZ. 2018a. Fish meal, protein 62%. [internet]. [cited 03 Nov 2018]. Available from:

INRA-CIRAD-AFZ. 2018b. Soybean meal, protein 46%. [internet]. [cited 03 Nov 2018]. Available from:

Jafarnejad S, Sadegh M. 2011. The effects of different levels of dietary protein, energy and using fat on the performance of broiler chicks at the end of the third weeks. Asian J Poul Sci. 5:35-40.

Jayaprakash G, Sathiyabarathi M, Arokia-Robert M. 2016. Insects-a natural source for poultry nutrition. Int J Sci Environ Technol. 5:733-736.

Jie H, Li PM, Zhao GJ, Feng XL, Zeng DJ, Zhang CL, Lei MY, Yu M, Chen Q. 2016. Amino acid composition of royal jelly harvested at different times after larval transfer. Genet Mol Res. 15:1-10.

Jintasataporn O. 2012. Production performance of broiler chickens fed with silkworm pupa (Bombyx mori). J Agric Sci Technol A. 2:505-510.

Józefiak D, Józefiak A, Kierończyk B, Rawski M, Świątkiewicz S, Długosz J, Engberg RM. 2016. Insects – A natural nutrient source for poultry – A review. Ann Anim Sci. 16:297-313.

Khan M, Chand N, Khan S, Khan RU, Sultan A. 2018. Utilizing the house fly (Musca Domestica) larva as an alternative to soybean meal in broiler ration during the starter phase. Brazilian J Poult Sci. 20:9-14.

Kroeckel S, Harjes AGE, Roth I, Katz H, Wuertz S, Susenbeth A, Schulz C. 2012. When a turbot catches a fly: Evaluation of a pre-pupae meal of the black soldier fly (Hermetia illucens) as fish meal substitute - Growth performance and chitin degradation in juvenile turbot (Psetta maxima). Aquaculture. 364-365:345-352.

Lakemond CMM. 2017. Nitrogen-to-protein conversion factors for three edible insects: Tenebrio molitor, Alphitobius diaperinus, and Hermetia illucens. J Agric Food Chem. 65:2275-2278.

Liland NS, Biancarosa I, Araujo P, Bieman D, Bruckner CG, Waagbo R, Torstensen BE, Lock EJ. 2017. Modulation of nutrient composition of black soldier fly (Hermetia illucens) larvae by feeding seaweed-enriched media. PLoS One. 12:e0183188.

Lin SM, Mao SH, Guan Y, Lin X, Luo L. 2012. Dietary administration of chitooligosaccharides to enhance growth, innate immune response and disease resistance of Trachinotus ovatus. Fish Shellfish Immunol. 32:909-913.

Longvah T, Mangthya K, Ramulu P. 2011. Nutrient composition and protein quality evaluation of eri silkworm (Samia ricinii) prepupae and pupae. Food Chem. 128:400-403.

Makkar HPS, Tran G, Heuze V, Ankers P. 2014. State of the art on use of insects as animal feed. Anim Feed Sci Tech. 197:1-33.

Mohammed A, Laryea TE, Ganiyu A, Adongo T. 2017. Effects of black soldier fly (Hermetia illucens) larvae meal on the growth performance of broiler chickens. UDS Int J Dev. 4:35-41.

Morales-Ramos JA, Rojas MG. 2015. Effect of larval density on food utilization efficiency of Tenebrio molitor (Coleoptera: Tenebrionidae). J Econ Entomol. 108:2259-2267.

Mutafela RN. 2015. High value organic waste treatment via black soldier fly bioconversion. Diva-portal [Internet]. Available from:

Nishimune T, Watanabe Y, Okazaki H, Akai H. 2000. Thiamin is decomposed due to Anaphe spp entomophagy in seasonal ataxia patients in Nigeria. J Nutr. 130:1625-1628.

Okunowo WO, Olagboye AM, Afolabi LO, Oyedeji AO. 2017. Nutritional value of Rhynchophorus phoenicis (F) larvae, an edible insect in Nigeria. African Entomol. 25:156-163.

Paul A, Frederich CM, Megido RC, Alabi T, Malim P, Uyttenbroeck R, Francis F, Blecker C, Haubruge E, Lognay G, Danthine S. 2017. Insect fatty acids: A comparison of lipids from three Orthopterans and Tenebrio molitor L. larvae. J Asia Pac Entomol. 20:337-340.

Pieterse E, Pretorius Q. 2014. Nutritional evaluation of dried larvae and pupae meal of the housefly (Musca domestica) using chemicaland broiler-based biological assays. Anim Prod Sci. 54:347-355.

Rachmawati, Buchori D, Hidayat P, Hem S, Fahmi MR. 2010. Perkembangan dan kandungan nutrisi larva Hermetia illucens (Linnaeus) (Diptera: Startiomyidae) pada bungkil kelapa sawit. J Entomol Indones. 7:28-41.

Ravindran V, Hew LI, Ravindran G, Bryden WL. 2005. Apparent ileal digestibility of amino acids in dietary ingredients for broiler chickens. Anim Sci. 81:85-97.

Ravzanaadii N, Kim SH, Choi WH, Hong SJ, Kim NJ. 2012. Nutritional value of mealworm, Tenebrio molitor as food source. Int J Indust Entomol. 25:93-98.

Rumpold BA, Schluter OK. 2013. Potential and challenges of insects as an innovative source for food and feed production. Innov Food Sci Emerg Technol. 17:1-11.

Sanchez-Muros MJ, Barroso FG, Manzano-Agugliaro F. 2014. Insect meal as renewable source of food for animal feeding: A review. J Clean Prod. 65:16-27.

Schabel HG. 2010. Forest insects as food: A global review. In: Durst PB, Johnson D V, Leslie RL, Shono K, editors. Forest insects as food: Humans bite back. Proceedings of a Workshop on Asia-Pacific Resources and their Potential for Development. Rome (Italy): FAO.

Schiavone A, De Marco M, Martínez S, Dabbou S, Renna M, Madrid J, Gasco L. 2017. Nutritional value of a partially defatted and a highly defatted black soldier fly larvae (Hermetia illucens L) meal for broiler chickens: apparent nutrient digestibility. apparent metabolizable energy and apparent ileal amino acid digestibility. J Anim Sci Biotechnol. 8:51.

Selcuk Z, Tiril SU, Alagil F, Belen V, Salman M. 2010. Effects of dietary Lcarnitine and chromium pilinate supplementations on performance and some serum parameters in rainbow trout (Oconcorhynchus mykiss). Aquac Int. 18:213-221.

Sitompul S. 2004. Analisis asam amino dalam tepung ikan dan bungkil kedelai. Buletin Teknik Pertanian. 9:33-37.

Spranghers T, Ottoboni M, Klootwijk C, Ovyn A, Deboosere S, De Meulenaer B, Michiels J, Eeckhout M, De Clercq P, De Smet S. 2016. Nutritional composition of black soldier fly (Hermetia illucens) prepupae reared on different organic waste substrates. J Sci Food Agric. 97:2594-2600.

Ssepuuya G, Namulawa V, Mbabazi D, Mugerwa S, Fuuna P, Nampijja Z, Ekesi S, Fiaboe KKM, Nakimbugwe D. 2017. Use of insects for fish and poultry compound feed in sub-Saharan Africa – A systematic review. J Insects Food Feed. 1:1-14.

Ullah R, Khan S, Hafeez A, Asad S, Nazir AK, Naila C, Naseer A. 2017. Silkworm (Bombyx mori) meal as alternate protein ingredient in broiler finisher ration. Pak J Zool. 49:1463-1470.

Utami U. 2018. Evaluasi kualitas ulat Hongkong (Tonebrio molitor L) dan maggot (Hermetia illucens) sebagai sumber protein hewani dengan pengolahan berbeda [Skripsi]. [Bogor (Indonesia)]: Institut Pertanian Bogor.

van Huis A, van Itterbeeck J, Klunder H, Mertens E, Halloran A, Muir G, Vantomme P. 2013. Edible insects: Future prospects for food and feed security [Internet]. Rome (Italy): FAO Forestry. Available from: i3253e/i3253e. pdf

Veldkamp T, Bosch G. 2015. Insects: A protein-rich feed ingredient in pig and poultry diets. Anim Front. 5:45-50.

Veldkamp T, van Duinkerken G, van Huis A, Lakemond CMM, Ottevanger E, Bosch G, van Boekel MAJS. 2012. Insects as a sustainable feed ingredient in pig and poultry diets - A feasibility study [Internet]. Lelystad (Netherlands): Wegeningen UR Livestock Research. Available from: WebQuery/wurpubs/fulltext/234247

Wardhana AH. 2016. Black Soldier Fly (Hermetia illucens) sebagai sumber protein alternatif untuk pakan ternak. Wartazoa. 26:69-78.

Yen AL. 2010. Edible insects and other invertebrates in Australia: Future prospects. In: Durst PB, Johnson D V, Leslie RL, Shono K, editors. Forest insects as food: Humans bite back. Proceedings of a Workshop on Asia-Pacific Resources and their Potential for Development. Rome (Italy): FAO.

Zielińska E, Baraniak B, Karaś M, Rybczyńska K, Jakubczyk A. 2015. Selected species of edible insects as a source of nutrient composition [Internet]. Amsterdam (Netherlands): Elsevier. Available from: elsevier/selected-species-of-edible-insects-as-a-source-of-nutrient-composition-LxUWE7plqE


  • There are currently no refbacks.

Copyright (c)  2018 WARTAZOA. Indonesian Bulletin of Animal and Veterinary Sciences

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.