DNA Amplification Technique for Detection of Bovine Brucellosis

Susan Maphilindawati Noor


Brucellosis is one of cattle diseases which causes a very significant economic loss and categorized as zoonotic disease. Early detection of Brucellosis in livestock is very important to prevent the spread of disease to livestock and humans. The success of Brucellosis control depends on rapid, sensitive and specific detection methods. The aim of this paper is to review several methods of Brucellosis detection in cattle. Currently, the detection of Brucellosis in Indonesia is using serological and isolation methods. The latter method is the gold standard of Brucellosis diagnosis, however, its sensitivity is low. Therefore, molecular techniques with DNA amplification have been developed and applied in many countries both in livestock and humans because they are more sensitive, specific and rapid in detecting Brucella sp in blood, milk and semen samples. Various DNA amplification methods for detection of Brucellosis that have been developed including polymerase chain reaction (PCR), finger printing and loop-mediated isothermal amplificatiom (LAMP). Both PCR and LAMP are more sensitive and specific in detecting Brucella sp than conventional techniques. PCR technique has advantages in detecting Brucella sp species to serotype and biovar levels. In addition, PCR reagents are cheaper and easier to obtain than LAMP eventhough, LAMP procedure is simpler and faster.


Brucellosis; cattle; detection; molecular; DNA

Full Text:



Acharya KP, Kaphle K, Shrestha K, Bastuji BG, Smitsf HL. 2016. Review of brucellosis in Nepal. International Journal of Veterinary Science and Medicine 4, 54–62.

Adhikari S. Prevalence of brucellosis in goats of Dang districts, Nepal Souenir 2012. 10th national veterinary conference, Kathmandu, Nepal.

Al-Dahouk S, Hagen RM, Nöckler K, Tomaso H, Wittig M, Scholz HC, Vergnaud G, Neubauer H. 2005. Failure of a short-term antibiotic therapy for human brucellosis using ciprofloxacin. A study on in vitro susceptibility of Brucella strains. Chemotherapy 511:352-356.

Arasoğlu T, Güllüce M, Özkan H, Adigüzel A, Şahin F. 2013. PCR detection of Brucella abortus in cow milk samples collected from Erzurum, Turkey. Turk J Med Sci. 43: 501-508.

Atluri VL, Xavier MN, de Jong MF, den Hartigh AB, Solis RE. 2011. Interaction of the human pathogenic Brucella species with their hosts. Annu. Rev. Microbiol. 65:523-541.

Baddour MM, Alkhalifa DH. 2008. Evaluation of 3 PCR techniques for detection of Brucella DNA in peripheral human blood. Egyptian J Med Microbiol; 16: 201–9.

Bricker BJ. 2002. PCR as a diagnostic tool for brucellosis. Vet. Microbiol. 90(1–4):435–446.

Bricker BJ, Ewalt DR, Olsen SC, Jensen AE. 2003. Evaluation of the Brucella abortus species-specific polymerase chain reaction assay, an improved version of the brucella AMOS polymerase chain reaction assay for cattle. J. Vet. Diagn. Invest. 15: 374-378.

Bricker BJ, Halling SM. 1995. Enhancement of the Brucella AMOS-PCR assay for differentiation of Brucella abortus vaccine strains S19 and RB51. J. Clin. Microbiol. 3:1640-2.

Bounaadja L, Albert D, Chenais B, Henault S, Zygmunt MS, Poliak S, Garin BB. 2009. Real-time PCR for identification of Brucella spp. a comparative study of IS711, BCSP31 and per target genes. Vet. Microbiol. 137(1–2):156–164.

Cloeckaert A, Verger JM. Grayon M. Grepinet O. 1995. Restriction site polymorphism of the genes encoding the major 25 and 36 kDa outer-membrane proteins of Brucella. Microbiol. 141: 2111-2121.

Deguo K, Toubiana M, Hartati S, Kusumawati A, Dubremetz J, Widada J. 2008. Development of loop-mediated isothermal amplification (LAMP) as a diagnostic tool of toxoplasmosis. Vet. Parasitol. 162 (3): 327-331.

Da Silva Mol JP, Franca SA, da Paixao TA, Santos RL. 2012. Laboratorial diagnosis of animal brucellosis. Revista Brasileira Ciencia Vet. 19:117-126.

De Santis R, Ciammaruconi A, Pomponi A, Fillo S, Lista F. 2011. Brucella: Molecular Diagnostic Techniques in Response to Bioterrorism Threat. J. Bioterr. Biodef. 2-8.

Dhama K, Karthik S, Chakraborty S, Tiwari R, Kapoor , Kumar A, Thomas P. 2014. Lop-mediated isothermal amplification of DNA (LAMP): A new diagnostic tool lights the world of diagnosis of animals and human phatogens: A review. Pak. J. Biol. Sci. 17:151-166.

Dubey P, Patel KB, Patel BK, Chauhan HC, Chandel BS, Patel SS, Shrimali MD, Kala JK, Patel MG, Patel AC, Rajgor M, Patel MA, Modi AN. 2017. Molecular Detection of Brucella Organism from Milk and Milk Products. Int. J. Curr. Microbiol. App. Sci. 6(4): 1087-1091.

Gamal W, Melzer Falk, Elschner MC, Neubauer H, Roesler U. 2014. Detection of Brucella melitensis in bovine milk and milk products from apparently healthy animals in Egypt by real-time PCR. J. Infect. Dev. Ctries. 8 (10):1339-1343.

García-Yoldi D, Marin CM, de Miguel MJ, Muñoz PM, Vizmanos JL, Lopez-Goñi I. 2006. Multiplex PCR assay for the identification and differentiation of all Brucella species and the vaccine strains Brucella abortus S19 and RB51. Clin. Chem. 52: 779–781.

Garcia-Yoldi, Marin CM, Lopez-Goni I. 2005. Restriction site polymorphisms in the genes encoding new members of group 3 outer membrane protein family of brucella spp. FEMS Microbiol. Lett. 245:79-84.

Godfroid J, Nielsen K, Saegerman C. 2010. Diagnosis of Brucellosis in Livestock and Wildlife. Croa. Med. J. 51: 296-305.

Gomo C, Caren A, Heerden H, Musari S, Pfukenyi MD,Wichatitsky MG. 2012. Detection of Brucella abortus in Chiredzi district in Zimbabwe. Ondeerspot J. Vet. Res. 79:417.

Gupta VK, Nayakwadi S, Kumar A, Gururaj, Pawaiya RS. 2014. Markers for the molecular diagnosis of brucellosis in animals. Adv. Anim. Vet. Sci. 2:31-39.

Gwida MM, El-Gohary AH, Melzer F, Tomaso H, Rosler U, Wernery V, Wernery R, Elschner M.C, Khan I, Eickhoff M, Schoner , Neubauer H. 2011. Comparison of diagnostic tests for the detection of Brucella spp. in camel sera. U.S National Library of Medicine; National Institute of Health.

Habtamu TT, Rathore R, Dhama K, Karthik K. 2013. Isolation and molecular detection of Brucella melitensis from disease outbreak in sheep and Brucella abortus from cattle farm by 711 and omp2a gene based PCR. J. Curr. Res. 5: 1920-1925.

Huber B, Scholz HC, Lucero N, Busse HJ. 2009. Development of a PCR assay for typing and subtyping of Brucella species. Int. J. Med. Microbiol. 299 (8): 563–573.

Kang S, Her M, Kim JW, Ji-Yeon Kim, Ko K, Ha YM, Jung SC. 2011. Advanced Multiplex PCR Assay for Differentiation of Brucella Species. Appl. Environ. Microbiol 77 (18): 6726–6728.

Kaltungo BY, Saidu SNA, Sackey AKB, Kazeem HM. 2014. A review on diagnostic techniques for brucellosis. African J. Biotech. 13(1): 1-10.

Khamesipour F, Doosti A, Taheri H. 2013. Molecular detection of Brucella spp. In the semen, testis, and blood samples of cattle and sheep. J. Pure. Appl. Microbiol. 7:495-500.

Karthik K, Rathore R, Thomas P, Elamurugun A, Arun TR, Dharma K. 2014. Serological andmolecular detection of brucella abortus frim cattle by RBPT, STAT, and PCR sample suitability of whole blood for PCR. Asian J. Anim. and Vet. Adv. 9 (4):262-269.

Kazemi BS, Yousefi Namin A, Dowlatshahi M, Bandepour M, Kafilzadeh F, Gachkar L, Mahmoudinejad F, Samarghandi A, Mardani M. 2008. Detection of Brucella by peripheral blood PCR and comparison with culture and serological methods in suspected cases. Iranian J. Public Health. 37, 96−102.

Kattar MM, Zalloua PA, Araj GF, Samah-Kfoury J, Shbaklo H. et al. 2007. Development and evaluation of real-time polymerase chain reaction assay on whole blood and paraffin-embedded tissue for rapid diagnosis of human brucellosis. Diagn. Microbiol. Infect. Dis. 59:23-32.

Kumar S, Tuteja U, Sarika K, Singh D, Kumar A, Kumar O. 2011. Rapid multiplex PCR assay for the simultaneous detection of the Brucella Genus, B. abortus, B. melitensis, and B. suis. J. Microbiol. Biotechnol. 21(1):89–92.

López-Goñi I, García-Yoldi D, Marín CM, de Miguel MJ, Barquero-Calvo E, Guzmán-Verri C, Albert D, Garin-Bastuji B: New Bruce-ladder multiplex PCR assay for the biovar typing of Brucella suis and the discrimination of Brucella suis and Brucella canis. 2011. Vet. Microbiol. 154(1–2):152–155.

López-Goñi I., García-Yoldi D., Marín CM., de Miguel MJ., Munoz PM., Blasco J., Jacques I., Grayon M., Cloeckaert A., Ferreira AC., Cardoso R., Correˆa de Sa´MI., Walravens K., Albert D., and Garin-Bastuji B. 2008. Evaluation of a Multiplex PCR Assay (Bruce-ladder) for Molecular Typing of all Brucella Species, Including the Vaccine Strains. J.Clin. Microbiol. 46 (10): 3484-3487.

Lubeck PS, Skurnik M, Ahrens P, et al. 2003. A multiplex PCR-detection assay for Yersinia enterocolitica serotype O:9 and Brucella spp. based on the perosamine synthetase gene. Application to Brucella diagnostics. Adv. Exp. Med. Biol. 529: 451-453.

Mayer-Scholl A, Draeger A, Göllner C, Scholz HC, Nöckler K. 2010. Advancement of a multiplex PCR for the differentiation of all currently described Brucella species. J. Microbiol. Methods. 80 (1):112–114.

Marcos DT, Gioffré AK, María E. Cucchi C, Caimi KC, Ruybal P, Zumárraga MJ, Cravero SL. 2015. LAMP technology: Rapid identification of Brucella and Mycobacterium avium subsp. Paratuberculosis. Braz. J. Microbiol. 46 (2): 619–626.

Moslemi E, Mohammad HS, Gholamreza J, Kazem P, Taher NS, Hossein KA. 2009. Loop mediated isothermal amplification (LAMP) for rapid detection of HBV in Iran. Afr. J. Microbiol. Res. 3 (8) : 439-445.

Mori Y, Nagamine K, Tomita N. Notomi T. 2001. Detection of loop-mediated isothermal amplification reaction by turbidity derived from magnesium pyrophosphate formation. Biochem. Biophys. Res. Commun. 289: 150–154.

Moussa IM, Omnia ME, Amin AS, Ashgan MH, Selim SA. 2011. Evaluation of the currently used polymerase chain reaction assays for molecular detection of brucella species. Afr. J. Microbiol. Res. 5:1511-1520.

Mukherjee F, Jain J, Patel V, Nair M. 2007. Multiple genus-specific markers in PCR assays improve the specificity and sensitivity of diagnosis of brucellosis in field animals. J. Med. Microbiol. 56: 1309–16.

Nagamine K, Hase T, Notomi T. 2002a. Accelerated reaction by loop-mediated isothermal amplification using loop primers. Mol Cell Probes.16:223–229.

Nagamine K, Kuzuhara Y, Notomi T. 2002b. Isolation of single-stranded DNA from loop-mediated isothermal amplification products. Biochem. Biophys. Res. Commun. 290: 1195-1198.

Noor SM, Sudarmono PP, Kusumawati A, Karuniawati A. 2014. Karakterisasi Molekuler Brucella abortus untuk Pengembangan Metode Diagnostik Loop-Mediated Isothermal Amplification Brucellosis. Disertasi. Jakarta. Indonesia. Universitas Indonesia.

Noor SM, Sudarmono PP, Kusumawati A, Karuniawati A. 2014. Identifikasi Brucella abortus Isolat lokal dengan Brucella abortus Strain Specific-Polymerase Chain Reaction. J. Vet. 15(3): 306-311.

Noor SM, Sudarmono PP, Kusumawati A, Karuniawati A. 2015. Deteksi Brucelosis Pada Susu Sapi Dengan Uji Polymerase Chain Reaction (PCR). Jurnal Kedokteran Hewan. 9(1): 64-66.

Notomi T, Okayama H, Masubuchi H, et al. 2000. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 28: E63.

OIE (Office International des Épizooties). 2009. Manual of diagnostic tests and vaccines for terrestrial animals, 5th edition, part 2, section 2.3, chapter 2.3.1.

OIE (Office International des Épizooties). 2011. Manual of diagnostic tests and vaccines for terrestrial animals, 6th ed. Office International des Épizooties, Paris, France

Ohtsuki R, Kawamoto K, Kato Y, et al. 2008. Rapid detection of Brucella spp. by the loop-mediated isothermal amplification method. J. Appl. Microbiol. 104:1815–1823.

Pabuccuoglu O, Ecemis TES, Coskun A, Akcali S, Sanlidag T. 2011. Evaluation of serological tests for diagnosis of brucellosis. Jpn. J. Infect. Dis. 64 (4): 272–276.

Poiester FP, Nielsen K, Samartino LE, Yu WL. 2010. Diagnosis of Brucellosis. Open Vet. Sci. J. 4:46.

Priyadarshini A, Sarangi LN, Palai TK, Panda HK, Misgra R, Behera PC. 2013. Brucellosis in cattle and occupationally exposed human beings: A serosurvey in Odisha, India. J. Pure Aplied Microbiol. 7:3255-3260.

Queipo-Ortuno MI, Colmenero JD, Reguera JM, Garcia-Ordonez MA, Pachon ME, et al. 2008. Rapid diagnosis of human brucellosis by SYBR Green I-based real-time PCR assay and melting curve analysis in serum samples. Clin. Microbiol. Infect. 11:713-718.

Redkar R, Rose S, Bricker B, DelVecchio V. 2001. Real-time detection of Brucella abortus, Brucella melitensis, and Brucella suis. Mol. Cell. Probes. 15: 43-52.

Romero C, Gamazo C, Pardo M, Lopez-Goni I. 1995. Specific detection Brucella DNA by PCR. .Clin. Microbiol. 33: 615-617.

Seleem MN, Boyleb SM, Sriranganathan N. 2010. Brucellosis: A re-emerging zoonosis. Vet. Microb. 140 (3-4):392-398.

Soleimani M, Shams S, Majidzadeh-A K. 2013. Developing a real-time quantitative loop-mediated isothermal amplification assay as a rapid and accurate method for detection of Brucellosis. J. Applied Microbiol. 115:828-834.

Smirnova AE, Varsin AV, Sandybaev TN, Klotchenko AS, Plotnikova AM, Chervyakova VO, Ransyzbay RA, Kiselev I. O. 2013. Curr. Meth. Human and Ani. Brucellosis.

Song T, Toma C, Nakasone N, Iwanaga M. 2005. Sensitive and rapid detection of Shigella and enteroinvasive Escherichia coli by a loop-mediated isothermal amplification method. FEMS Microbiol. Lett. 243: 259-263.

Surucuoglu S, El S, Ural S, Gazi H, Kurutepe S, Taskiran P, Yurtsever SG. 2009. Evaluation of real-time PCR method for rapid diagnosis of brucellosis with different clinical manifestations. Pol. J. Microbiol. 58: 1519.

Taleski V. 2010. An overview of introducing various laboratory tests for diagnosis of human brucellosis in the Republic of Macedonia. Macedonia J. Med. Sci. 3: 239-245.

Wang Y, Wang Z, Zhang Y, Bai L, Zhao Y, Liu C, Ma A, and Yu1 H. 2014. Polymerase chain reaction–based assays for the diagnosis of human brucellosis. Annals. Clin. Microbiol. Antimicrob. 13 (31): 2-8.

Wareth G, Melzer F, Elschner MC, Neubauer H, Roesler U. 2014. Deetection of Brucella melitensis in bovine milk and milk product from apparently healthy animals in Egypt by real-time PCR. J. Infect. Dev. Ctries. 8 (10): 1339-1343.

Yu WL, Nielsen K. 2010. Review of detection of Brucella spp. by polymerase chain reaction. Croat. Med. J. 51(4):306–313.


  • There are currently no refbacks.

Copyright (c)  2018 WARTAZOA. Indonesian Bulletin of Animal and Veterinary Sciences

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.