Application of Peptide for Improving Animal Health and Livestock Productivity

Eni Kusumaningtyas


The use of antibiotics as growth promoter has been banned in Indonesia. One potential alternative antibiotic is peptide compounds. Peptides composed of several amino acid monomers that bind through peptide or amide bonds. Peptides are found in natural or synthetic forms that can be used to improve animal health and livestock productivity. This paper discusses the application of peptides in animal health and livestock productivity and the possibility of their utilization in Indonesia. Antimicrobial peptides are used to overcome bacterial infections, especially that are resistant to antibiotics and to preserve semen. Peptide vaccine can be used to replace conventional vaccines, especially for malignant viruses such as foot and mouth disease virus (FMD). Other peptides are used for infectious diseases and diabetes diagnostic tool in animals, medical treatment and animal reproduction system. Some peptides can be isolated from venom and have several benefits as an alternative fiber sutures for surgery and pain relief. Peptide-based drugs are metabolized faster than other small molecules, therefore, reducing the risk of contamination in livestock products.


Peptide; animal health; livestock production

Full Text:



Alvarez-Gallardo H, Kjelland ME, Moreno JF, Welsh TH Jr, Randel RD, et al. 2013. Gamete therapeutic: Recombinant protein adsorption by sperm for increasing fertility via artificial insemination. PLoS ONE. 8(6): e65083.

Andreu D, Merrifield RB, Steiner H, Boman HG. 1985. N-terminal analogues of cecropin A: Synthesis, antibacterial activity, and conformational properties. Biochemistry 24: 1683-1688.

Barbosa MD, Gregh SL, Passanezi E. Fibrin adhesive derived from snake venom in periodontal surgery. J Periodontol 2007; 78: 2026-2031.

Bechinger B, Gorr SU. 2017. Antimicrobial peptides: Mechanism of action and resistance. J Dent Res. 96(3): 254-260.

Birkemo GA, Sullivan OO, Ross RP, Hill C. 2009. Antimicrobial activity of two peptides casecidin 15 and 17, found naturally in bovine colostrum. J Appl Microbiol 106: 233-240.

Borchers A. 2015. Hemostatic drug in Small animal critical care medicine. Second Edition. Pp: 893-898.

Bruno BJ, Miller GD, Lim CS. 2013. Basics and recent advances in peptide and protein drug delivery. Ther Deliv. 4(11): 1443-1467.

Campbell FE, Bredhauer B. 2008. Trauma-induced central diabetes insipidus in a cat. Aust Vet J. 86: 102-105.

Cheng G, Hao H, Xie S, Wang X, Dai M, Huang L, Yuan Z. 2014. Antibiotics alternatives: the substitution of antibiotics in animal husbandry. Front Microbiol. 5(217): 1-15.

Choi SC, Ingale SL, Kim JS, Park YK, Kwon BJ, Chae BJ. 2013. Effect of dietary supplementation with antimicrobial peptide-P5 on growth performance, nutrient retention, excreta and intestinal microflora and intestinal morphology of broiler.J Allergy Clin Immunol Pract. 185:78-84.

Committee for veterinary medicinal products 2009. Buserelin, Summary Report. EMEA/MRL/019/95-FINAL. Hal 1-2.

Craik DJ, Fairlie DP, Liras S, Price D. 2013. The future of peptide-based drug. Chem Biol Drug Des. 81: 136-147.

Demeterco D, Henry DD, Mercadante VRG, Lamb GC, Gaievski FR, Weiss B, Turbay GN, Segui MS Weiss RR, Betioi MAF, Kozicki LE. 2014. The effects of intramuscular or intravenous injections of gonadotropin releasing hormone at fixed-time artificial insemination on pregnancy rates of Bos indicus beef cows. Braz Arch Biol Technol. 57(3): 361-366.

Dulal P. 2010. Protein or peptide drugs: application, problems and solutions. Biotechnol Soc Nepal. E-Buletin. 1-5.

Fosgerau K, Hoffmann T. 2015. Peptide therapeutic: current status and future directions. Drug Discov Today.20(1): 122-128.

Ghorbani A, Shafiee-Nick. 2015. Pathological consequences of C-peptide deficiency in insulin-dependent diabetes mellitus. World J Diabetes 6(1): 145-150.

Hou Y, Wu Z, Wang G, Wu G, 2017. Protein hydrolysates in animal nutrition: industrial production, bioactive peptides, and functional significance. JAnim Sci Biotechnol. 8(24): 1-13

Kusumaningtyas E. 2013. Peran peptida susu sebagai antumikroba untuk meningkatkan kesehatan. Wartazoa 23(2): 63-75.

Lamont EA, Janagama HK, Ribeiro-Lima J, Vulchanora L, Seth M, yang M, Kurmi K, Waters WR, Thacker T, Sreevatsan S. 2014. Circulating Mycobacterium bovis peptides and host response proteins as biomarker for unambiguous detection of subclinical infection. J Clin Microbiol. 52:536-543

Lahlou N, Carel JL, Roger M. 2000. Pharmacokinetics and pharmacodynamics of GnRH agonist: clinical implications in pediatrics. J Pediatr Metab. Jul 13 Suppl 1: 1723-1737.

Leighton E, Sainsbury CAR, Jones G. 2017. A practical review of C-peptide testing in diabetes. Diabetes Ther. 8: 475-487.

Lai Y, Gallo L. 2009. AMPed up immunity: How antimicrobial peptides have multiple roles in immune defense. Trends Immunol. 30:131–141.

Lau JL, Dunn MK. 2018. Therapeutic peptides, Historical perspectives, current development trends, and future directions. Bioorg Med Chem. 26(10): 2700-2707.

Lee S, Lee Y, Kim R, Park J, Park M, Ko M, Chu J, Lee K, Kim S, Tark D, Lee H, Ko Y, Seo M, Park J, Kim B. 2017. Rapid engineering of foot and mouth disease vaccine and challenge viruses. J Virol. 91: e00155-17

Li W, Joshi MD, Sighania S, Ramsey KH, Murthy AK. 2014. Peptide vaccine: progress and challenges. Vaccine.2: 515-536.

Lin Y, Hu N, Lyu P, Ma J, Wang L, Zhou M, Guo S, Chen T, Shaw C. 2014. Hylaranin: Prototypes of a newclass of amphibian antimicrobial peptide from the skin secretion of the oriental broad-folded frog, Hylarana latoucii. Amino Acids. 46: 901-909.

Liu D, Kobayasi T, Russo S, Li F, Plevy SE, Gambling TM, Carson JL, Mumper RJ. 2013. In vitro and in vivo evaluation of a water-in-oil microemultion system for enhanced peptide intestinal delivery. The AAPS Journal. 15(1):288-298

Liu Q, Yao S, Gao S, Yang Y, Deng J, Ren Z, Shen L, Cui H Hu Y, Ma X, Yu S. 2017. Use of antimicrobial peptides as a feed additive for juvenile goat. Nature Scientific Report.7(12254): 1-11

Manninen AH. 2009. Protein hydrolysates in sports nutrition. Nutr Metab. 6(38): 1-5.

Marks JI, Ax RL. 1985. Relationship of nonreturn rates of dairy bulls to binding affinity of heparin to sperm. J Dairy Sci 68: 2078-2082.

Medeiros LKG, Corneiro RS, Alves AS, Mendes RS, Neto PIN. 2014. Diabetes insipidus in cat. Acta Sci Vet 42: 1-4.Mergler M. 2017. Peptides in veterinary medicine.Bachem. 12-17.

Mohan A, Mcclements DJ, Udenigwe C. 2016. Encapsulation of bioactive whey peptides in soy lecithin-derived nanoliposomes: Influence of peptide molecular weight. Food Chem. 213: 143-148.

Morrell JM, Wallgren M. 2014. Alternatives to antibiotics in semen extenders: A review. Pathogens. 3(4): 934-946

Muheem A, Shakeel F, Jahangir MA, Anwar M, Mallick N, Jain GK, Warsi MH, Ahmad FJ. 2016. A review on the strategies for oral delivery of proteins and peptides and their clinical perspectives. Saudi Pharm J. 24: 41-428.

Muller B, Durr S, Alonso S, Hattendorf J, Laise CJM, Parsons SDC, Helden PD, Zinsstag J. 2013. Zoonotic Mycobacterium bovis-induced tuberculosis in human. Emerg Infect Dis 19(6): 899-908.

Oem JK, Kye SJ, Lee KN, Park JH, Kim YJ, Song HJ, Yeh M. 2005. Development of synthetic peptide ELISA based on nonstructural protein 2C of foot and mouth disease virus. J Vet Sci. 6(4): 317-325.

Otvost Jr L, Wade JD. 2014. Current challenges in peptide-based drug discovery. Frontier Chem. 2(62): 1-4.

Peng X, Wang A, Xie L, Song W, Wang J, Yin Z, Zhou D, Li F. 2016. Use of recombinant porcine β-defensin 2 as a medicated feed additive for weaned piglet. Nature Sci Report. 6(26790): 1-8.

Pollock NR, Macovei L, Kanunfre K, Dhiman R, Restrepo BI, Zarate I, Pino PA, Mora-Guzman F, Fujiwara RT, Michel G, Kashino SS, Campos-Neto A. 2013. Validation of Mycobacterium tuberculosis Rv1681 protein as a diagnostic marker of active pulmonary tuberculosis. J. Clin. Microbiol. 51:1367–1373.

Prabakaran M, Ho HT, Prabhu N, Velumani S, Szyporta M, et al. (2009) Development of Epitope-Blocking ELISA for Universal Detection of Antibodies to Human H5N1 Influenza Viruses. PLos One 4(2): e4566.

Ren ZH, Yuan W, Deng HD, Dan QX, Jin HT, Tian CL, Peng X, Liang Z, Gao S, Xu SH, Li G, Hu Y. 2015. Effect of antibacterial peptide on cellular immunity in weaned piglets. J. Anim. Sci.93:127–134.

Rosenfield, DA, Nichi M, Pizzutto CS. 2017. C-peptide for diagnostics and theraphy: a veterinary medicine point of view. Pesq Vet Bras. 37(1): 36-40.

Sanchez A and Vasquez A. 2017. Bioactive peptides: A review. Food Qual Saf. 1 Issue 1: 29-46.

Schulze M, Dathe M, Waberski D, Muller K. 2016. Liquid storage of boar semen: current and future perspectives on the use of cationic antimicrobial peptides to replace antibiotic in semen extender. Theriogenology. 85 Issue 1: 39-46

Schulze M, Grobbel M, Muller K, Junkes C, Dathe M, Rudiger K, Jung M. 2015. Challenges and limits using antimicrobial peptides in boar semen preservation. Reprd Dom Anim 50 (Suppl.2) 5-10.

Schulze M, Junkes C, Mueller P, Speck S, Ruediger K, Dathe M, Mueller K. 2014. Effect of cationic antimicrobial peptides on liquid-preserved boar spermatozoa. PLoS ONE. 9(6):e100490.

Shen G, Behera D, Bhalla M, Nadas A, Laal S. 2009. Peptide-based antibody detection for tuberculosis diagnosis. Clin Vaccine Immunol. 16:49–54.

Speck S, Courtiol A, Junkes C, Dathe M, Muller K, Schulze M. 2014. Cationic synthetic peptides: assessment of their antimicrobial potency in liquid preserved boar semen. PLoS ONE. 9(8): e 105949.

Tóth F, Frank , Martin-Jiménez T, Elliott SB, Geor RJ, Boston RC. 2010. Measurement of c-peptide concentrations and responses to somatostatin, glucose infusion, and insulin resistance in horses. Equine Vet. J. 42:149-155.

Utkin YN. 2015. Animal venom studies: current benefits and future development. World J Biol Chem. 6(2): 28-33

Velumani S, Ho H-T, He F, Musthaq S, Prabakaran M, et al. (2011) A Novel Peptide ELISA for Universal Detection of Antibodies to Human H5N1 Influenza Viruses. PLoS ONE 6(6): e20737. doi:10.1371/journal.pone.0020737.

Wang CY, Chang TY, Walfield AM, Ye J, Shen M, Chen SP, Li MC, Lin YL, Jong MH. Yang PC, Chyr N, Kramer E, Brown F. 2002. Effective synthetic peptide vaccine for foot-and-mouth disease in swine. 20(19-20): 2603-2610.

Wang S, Zeng X, Yang Q, Qiao S. 2016. Antimicrobial peptides as potential alternatives to antibiotics in food animal industry. Int J Mol Sci. 17(603): 1-12.

Wang S, Zeng XF, Wang QW, Zhu JL, Peng Q, Hou CL,Thacker P, Qiao SY. 2015. The antimicrobial peptide sublancin ameliorates necrotic enteritis induced by Clostridium perfringens in broilers. J Anim Sci. 93(10): 4750-4760.

Whelan AO, Clifford D, Upadhyay B, Breadon EL, McNair J, Hewinson GR, Vordermier MH. 2010. Development of a skin test for bovine tuberculosis for differentiating infected from vaccinated animals. J.Clin.Microbiol. 48(9):317-381.

WHO. 2014. Synthetic peptide vaccine.

Xiao H, Shao F, Wu M, Ren W, Xiong X, Tan B, Yin Y. 2015. The application of antimicrobial peptides as growth and health promoters for swine. JAnim SciBiotechnol. 6(19): 1-6.

Yamada K, Nakao T, Nakada K, Matsuda G. 2002. Influence of GnRH analogue (fertirelin acetate) doses on synchronization of ovulation and fixed-time artificial insemination in lactating dairy cow. Anim Reprod Sci. 15: 74(1-2): 27-34.

Yang J, Yang S, Yang Y, Zhi A, Zhao D, Zhi Y, Xing G, Deng R, Chai S, Zhang G. 2010. Development of synthetic peptide ELISA assay for the detection of foot-and-mouth disease virus nonstructural protein antibodies. Agric Sci in China. 9 (issue11): 1677-1683.

Zaiou M, Gallo RL. 2002. Cathelicidin, essential gene-encoded mammalian antibiotics. J Mol Med 80: 549-561.

Zasloff M. 2002. Antimicrobial peptides of multicellular organisms. Nature. 415, 389–395.

Zhang Z, Pan L, Ding Y, Zhou P, Lv J, Chen H, Fang Y, Liu X, Chang H, Zhang J, Shao J, Lin T, Zhao F, Zhang Y, Wang Y. 2015. Efficacy of synthetic peptide candidate vaccines against serotype-A foot-and-mouth disease virus in cattle. Appl Microbiol Biotechnol 3: 1389-1398.


  • There are currently no refbacks.

Copyright (c)  2018 WARTAZOA. Indonesian Bulletin of Animal and Veterinary Sciences

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.