Page Header

  • Home
  • About
  • Login
  • Register
  • Search
  • Current
  • Archives
Home > Semnas TPV 2020 > Santoso

Pola Citra Suhu Permukaan Pada Sapi Perah Yang Diukur Menggunakan Kamera Termal Inframerah

K Santoso, F M Yusuf, A Setiyono, M F Ulum, K B Seminar, R Arif, A Suprayogi

Abstract

Kamera termal inframerah adalah perangkat yang digunakan untuk memeriksa suhu permukaan dengan cara non-kontak dan non-invasif. Penelitian ini bertujuan untuk mengetahui nilai normal suhu permukaan di berbagai wilayah pada 15 ekor sapi perah betina di Ciomas, Bogor menggunakan pencitraan termal pada indeks suhu-kelembaban 71 dan menentukan wilayah yang akan diduga suhu rektal. Suhu permukaan tubuh diambil dengan kamera termal FLIR One Pro LT, sedangkan suhu inti diukur menggunakan termometer melalui rektum. Uji statistik dengan metode ANOVA. Temperatur permukaan diukur pada bagian hidung, pipi, mata, dada, perut, bagian kiri depan, bagian kanan depan, bagian kiri belakang dan bagian belakang kanan, dan daerah vulva dengan rata-rata 34,81 C, 32,64 C, 37,59 C, 32,46 C, 32,81 C, 37,41 C, 37,16 C, 36,33 C, 36,04 C, dan37,30 C, termasuk suhu rektal 37,88 C. Dengan analisis statistik, suhu permukaan mata, kuarter kiri depan, kuarter kanan depan, dan area vulva, tidak menunjukkan perbedaan yang signifikan (P> 0,05) dengan suhu rektal. Suhu permukaan dipengaruhi oleh suhu inti, suhu lingkungan, dan regulasi pembuluh darah. Peningkatan suhu permukaan menunjukkan adanya peradangan. Daerah terbaik untuk memperkirakan suhu rektal adalah daerah mata.

 Keywords

Friesian Holstein; kamera termal inframerah; suhu permukaan; suhu tubuh; wilayah

References

Adhianto K, Siswanto, Kesuma CN. 2015. Pengaruh frekuensi penyiraman air menggunakan sprinkler terhadap respon fisiologis dan pertumbuhan sapi peranakan Simmental. Buletin Peternakan. 39:109-115.

Bansi H. 2018. Utilization of infrared thermography in cattle production and its application potency in Indonesia. Wartazoa. 28:99-106.

Berry RJ, Kenned AD, Scott SL, Kyle BL, Schaefer AL. 2003. Daily variation in the udder surface temperature of dairy cows measured by infrared thermography: potential to mastitis detection. Can J Anim Sci. 83:687-693.

Brzozowski T, Magierowska K, Magierowski M, Ptak-Belowska A, Padjo R, Kwiecien S, Olszanecki R, Korbut R. 2017. Recent advances in the gastric mucosal protection against stress-induced gastric lesions. Importance of renin-angiotensin vasoactive metabolites, gaseous mediators and appetite petptides. Curr Pharm Des. 23:3910-3922.

Chacur MGM, Bastos GP, Vivian DS, Silva L, Chiari LNF, Araujo JD, Souza CD, Gabriel Filho LRA. 2016. Use of infrared thermography to evaluate the influence of the of climatic factors in the reproduction and lactation of dairy cattle. Acta Sci Vet. 44:1412-1421.

Cruz-Albarran IA, Benitez-Rangel JP, Osornio-Rios RA, Dominguez-Trejo B, Rodriguez-Medina DA, Morales-Hernandez LA. 2019. A new approach to obtain a colour palette in thermographic images. Quant InfraRed Thermogr J. 16:35-54.

Gloster J, Ebert K, Gubbins S, Bashiruddin J, Paton DJ. 2011. Normal variation in thermal radiated temperature in cattle: implications for foot-and-mouth disease detection. BMC Vet Res. 7:73.

Hall JE. 2011. Guyton and Hall Textbook of Medical Physiology. 12th Ed. Philadelphia (US): Saunders.

Head MJ, Dyson S, Champney WS, Pelt J, Tober CL. 2001. Talking the temperature of equine thermography. Vet J. 162:166-167.

Hoffmann G, Schmidt M, Ammon C, Rose-Meierhöfer S, Burfeind O, Heuwieser W, Berg W. 2013. Monitoring the body temperature of cows and calves using video recordings from an infrared thermography camera. Vet Res Commun. 37:91-99.

Johnson SR, Rao S, Hussey SB, Morley PS, Traub-Dargatz. 2011. Thermographic eye temperature as an index to body temperature in ponies. J Equine Vet Sci. 31:63-66.

Knížková I, Kunc P, Gürdíl GAK, Pinar Y, Selví KÇ. 2007. Applications of infrared thermography in animal production. J Fac Agric. 22:329-336.

Lavers C, Franks K, Floyd M, Plowman A. 2005. Application of remote thermal imaging and night vision technology to improve endangered wildlife resource management with minimal animal distress and hazard to humans. J Phys Conf Ser. 15:207–212.

Maia ASC, DaSilva RG, Loureiro CMB. 2005. Sensible and latent heat loss from the body surface of Holstein cows in a tropical environment. Int. J. Biometerol. 50:17-22.

Nakagawa Y, Nassary NA, Fukuyama K, Kobayashi I. 2016. Measurement of udder surface temperature in cows using infrared thermometer. Adv Intell Syst. 387:429-434.

Peng D, Chen S, Li G, Chen J, Wang J, Gu X. 2019. Infrared thermography measured body surface temperature in dairy cows under different temperature-indexes. Int J Biometeorol. 63:327-336.

Rekant SI, Lyons MA, Pacheco JM, Artz J, Rodriguez LL. 2016. Veterinary applications of infrared thermography. Am J Vet Res. 77:98-107.

Sathiyabarathi M, Jeyakumar S, Manimaran A, Pushpadass HA, Kumaresan A, Lathwal SS, Sivaram M, Das DN, Ramesha KP, Jayaprakash G. 2018. Infrared thermography to monitor body and udder skin surface temperature differences in relation to subclinical and clinical mastitis condition in Karan Fries (Bos taurus x Bos indicus) crossbred cows. Indian J of Anim Sci. 88:694-699.

Schaefer AL, Cook N, Tessaro SV, Deregt D, Desroches G, Dubeski PL, Tong AKW, Godson DL. 2004. Early detection and prediction of infection using infrared thermography. Can J Anim Sci. 84:73-80.

Sellier N, Guettier E, Staub C. 2014. A review of method to measure animal body temperature in precision farming [review]. CIP. 2:74-99.

Soerensen DD, Pedersen LJ. 2015. Infrared skin temperature measurements for monitoring health in pigs [review]. Acta Vet Scand. 57:5-15.

Stewart M, Stafford KJ, Dowling SK, Schaefer AL, Webster JR. 2008. Eye temperature and heart rate variability of calves disbudded with or without local anaesthetic. Physiol Behav. 93:789-797.

Švejdová K, Šoch M, Šimková A, Zábranský L, Novák P, Brouček J, Čermák B, Pálka V, Šimák-Líbalová K. 2013. Measuring the body surface temperature of animals using a thermographic camera. AUCFT. 17:99-106.

Talukder S, Kerrisk KL, Ingenhoff L, Thomson PC, Gacia SC, Celi P. 2014. Infrared technology for estrus detection and as a predictor of time of ovulation in dairy cows in a pasture-based system. Theriogenology. 81:925-935.

Timsit E, Assié S, Quiniou R, Seegers H, Bareille N. 2011. Early detection of bovine respiratory disease in young bulls using reticulo-rumen temperature boluses. Vet J. 190:136-142.

Usamentiaga R, Venegas P, Guerediaga J, Vega L, Molleda J, Bulnes FG. 2014. Infrared thermography for temperature measurement and non-destructive testing. Sensors. 14:12305-12348.

Yang C, Li G, Zhang X, Gu X. 2018. Udder skin surface temperature variation pre- and post- milking in dairy cows as determined by infrared thermography. J of Dairy Res. 85:201-203.

Yani A, Suhardiyanto H, Hasbullah R, Purwanto BP. 2007. Analisis dan simulasi distribusi suhu udara pada kandang sapi perah menggunakan computational fluid dynamics (CFD). MP. 30:218-228.

DOI: http://dx.doi.org/10.14334/Pros.Semnas.TPV-2020-p.249-259

Refbacks

  • There are currently no refbacks.

Ohter

 Journal Help
 Open Journal Systems
User
Notifications
  • View             Subscribe
Journal Content
  
Browse
  • By Issue        By Author
  • By Title          Other Journals
Font Size

Information for
  • Readers       Authors      Librarians