The Correlation of Electric Conductivity Values with the Dairy Milk Quality

Nova Dilla Yanthi, Syahruddin Said, Anneke Anggraeni, Retno Damayanti, Muladno .


Milk, as the prime source of food for mammals, has an electrolyte to replace the loss of body fluid caused by activity or metabolism process. The total electrolyte concentration can be measured based on conductivity value from the nutritional content. Therefore, the parameter of the quality of milk with conductivity value can be a benchmark for quality and selling value of milk, making it simpler to be implemented in the field. The aim of this research is to analyze the relation between electric conductivity (EC) with the content value of cow milk. The milk was taken from 10-30 cows from a farm in Lembang (district of West Bandung), Pengalengan (district of Bandung), Tasikmalaya, Sumedang, Subang, Sukabumi and Bogor of West Java Province. The milk was put in 50 ml of sterile falcon. The Probe EC count-meter CT-3031 was used to measure EC while the quality of milk was measured by Probe MilkoScanTMFT 120 (Foss).  The milk quality is reflected by protein content, Fat, Total Solid (TS), Solid Non-fat (SNF), Lactose, Density, Acidity and Freeze Point Deviation (FPD). The results of this study show that the EC value in the milk gives a very real positive effect (p=<0.01) to Total Solid (TS), Solid Non-fat (SNF), Lactose, and Freeze Point Deviation (FPD). The value of EC also significantly affect (p=<0.05) the value of density in milk. Therefore, the value of EC can be used to predict the quality value of milk.


Correlation; Electric Conductivity; Milk Quality


Bernabucci U., Basiricò L., Morera P., Dipasquale D., Vitali A., Piccioli Cappelli F., and Calamari L. 2015. Effect of summer season on milk protein fractions in Holstein cows. J. Dairy Sci. 98:1815–1827 10.3168/jds.2014-8788

Biggadike, H., I. Ohnstad, E. Hillerton. 2000. A Practical Evaluation of Milk Conductivity Measurements. Proc. British Mastitis Conf. Shepton Mallet, Institute for Animal Health/Milk Development Council, p 56-61

Boisen S., Hvelplund T., Weisbjerg M.R. 2000. Ideal amino acid profiles as a basis for feed protein evaluation. Livestock Production Science 64; 239–251

Chandan R. C. 2006. Manufacturing yogurt and fermented milks. Blackwell Publishing All rights reserved.

Díaz J. R., G. Romero, R. Muelas, M. Alejandro, and C. PerisJ. 2012. Effect of intramammary infection on milk electrical conductivity in Murciano-Granadina goats. J. Dairy Sci. 95:718–726

Elmoslemanya A.M., Keefea G.P., Dohooa I.R., Wichtela J.J., Stryhna H., Dingwelle R.T. 2010. The association between bulk tank milk analysis for raw milk quality and on-farm management practices. Preventive Veterinary Medicine 95; 32–40. . doi:10.1016/j.prevetmed.2010.03.007

Enb A., Abou Donia M.A., Abd-Rabou N.S., Abou-Arab A.A.K., El-Senaity M.H. 2009. Chemical Composition of Raw Milk and Heavy Metals Bahavior During Processing of Milk Products. Global Veterinaria 3 (3):268-275

Fahmid S, Hassan E, Naeem H, Barrech S, Lodhi S and Latif S. 2016. Determination of mastitis by measuring milk electrical conductivity. Int. J. Adv. Res. Biol. Sci. 3(10): 1-4 doi: 10.22192/ijarbs

Gellrich K., Sigl T.,Meyer H. H. D. and Wiedemann S. 2015. Cortisol levels in skimmed milk during the first 22 weeks of lactation and response to short-term metabolic stress and lameness in dairy cows. Journal of Animal Science and Biotechnology 6:31 doi: 10.1186/s40104-015-0035-y.

Gobbetti M., F. Minervini, C. G. 2007. Rizzello. Bioactive peptides in dairy products In: Hui Y. H., editor. Handbook of food products manufacturing. John Wiley & Sons, Inc.; pp. 489–517.

Gorewit R. C. 2016. Lactation Biology and Methods of Increasing Efficiency. Designing Foods: Animal Product Options in the Marketplace. 208-223

Irwan F. dan Afdal. 2016. Analisis Hubungan Konduktivitas Listrik dengan Total Dissolved Solid (TDS) dan Temperatur pada Beberapa Jenis Air. Jurnal Fisika Unand Vol. 5, No. 1; 58-93

Juozaitienė V., L. Anskienė, E. Čereškienė, A. Juozaitis, J. Žymantienė, V. Žilaitis and R. Bobinienė. 2017. Electrical Conductivity of Milk in Different Milking Phases and Relationship with Subclinical Mastitis and Mastitis Pathogens of Cows. The J. Anim. Plant Sci. 27(5)

Kalač P., Samková E. 2010. The effects of feeding various forages on fatty acid composition of bovine milk fat: A review. Czech J. Anim. Sci., 55, (12): 521–537

Kaşikçi G, Çetin Ö, Bingöl E B, and Gündüz M C. 2012. Relations between electrical conductivity, somatic cell count, California mastitis test and some quality parameters in the diagnosis of subclinical mastitis in dairy cows. Turk. J. Vet. Anim. Sci. 36(1): 49-55

Korhonen H., Pihlanto-Leppala A. 2004. Milk-derived bioactive peptides: formation and prospects for health promotion In: Shortt C., O’Brien J., editors. Handbook of Functional Dairy Products. CRC Press; Boca Raton, F. L., USA: pp. 109–124.

Kholif A. E., Khattab H. M., El-Shewy A. A., Salem A. Z. M., Kholif A. M., El-Sayed M. M., Gado H. M., and Mariezcurrena M. D. 2014. Nutrient Digestibility, Ruminal Fermentation Activities, Serum Parameters and Milk Production and Composition of Lactating Goats Fed Diets Containing Rice Straw Treated with Pleurotus ostreatus. Asian Australas. J. Anim. Sci. 27(3): 357-364

Li X., 2016. Electrical Conductivity as an Indicator of Milk Spoilage for Use in Biosensor Technology. A Thesis. University of Otago, Dunedin, New Zealand

Malacarne M., Martuzzi F., Summer A., Mariani P. 2002. Protein and fat composition of mare’s milk: some nutritional remarks with reference to human and cow’s milk. International Dairy Journal 12; 869–877

Mammadova N., and E. Keskin. 2013. Research Article: Application of the Support Vector Machine to Predict Subclinical Mastitis in Dairy Cattle. The ScientificWorld Journal. Volume 2013, Article ID 603897, 9 pages

McCarthy O.J. and Singh H. 2009. Physico-chemical Properties of Milk.Advanced Dairy Chemistry, Volume 3: Lactose, Water, Salts and Minor Constituents. Edited by P.L.H. McSweeney and P.F. Fox, doi: 10.1007/978-0-387-84865-5_15

Milani M. R. M., Hense A., Rahmani E. and Ploeger A. 2015. A Pilot Investigation of the Relationship between Climate Variability and Milk Compounds under the Bootstrap Technique. Foods 3, 420-439; doi:10.3390/foods4030420

Milani M. R. M. 2016. The Effect of Climate Variability on Main Components of Cow Milk in Iran. Dissertation. Department of Organic Food Quality and Food Culture. Faculty of Organic Agricultural Sciences. University Kassel

Mohan M. S., Hopkinson J., and Hart F. 2014. Milk and Ice Cream Processing. Food Processing: Principles and Applications, Second Edition. by John Wiley & Sons, Ltd.

Norberg E., H. Hogeveen, I. R. Korsgaard, N. C. Friggens, K. H. M. N. Sloth, and P. Løvendahl. 2004. Electrical Conductivity of Milk: Ability to Predict Mastitis Status J. Dairy Sci. 87: 1099-1107.

Norberg, E., G.W. Rogers, R.C. Goodling, J.B. Cooper, P. Madsen. 2004b. Genetic parameters for testday electrical conductivity of milk for firstlactation cows from random regression models. J. Dairy Sci. 87(6): 1917-1924)

Norberg, E. 2005. Electrical conductivity of milk as a phenotypic and genetic indicator of bovine mastitis: a review. Livest. Prod. Sci. 96, 129–139.

O’Mahony, J. A., Fox, P. F., 2014. Milk: An Overview, in “Milk Proteins: From Expression to Food, Second Edition”.In: Boland, M., Singh H., Thompson, A. (Ed.). Academic Press, Elsevier New York.

Pegoretti C, Adriane Elisabete Costa Antunes, Fúlvia de Barros Manchado-Gobatto, Caroline Dario Capitani. 2015. Milk: An Alternative Beverage for Hydration?. Food and Nutrition Sciences, 6, 547-554.

Pereira, P.C. 2014. Milk Nutritional Composition and Its Role in Human Health. Nutrition, 30, 619-627.

Qayyum A, Ali Khan J, Hussain R, Avais M, Ahmad N, and Sarwar Khan M. 2016. Investigation of Milk and Blood Serum Biochemical Profile as an Indicator of Sub-Clinical Mastitis in Cholistani Cattle. Pak Vet J, 36(3): 275-279.

Rezaei R., Wu Z., Hou Y., Bazer F. W., Wu G. 2016. Amino acids and mammary gland development: nutritional implications for milk production and neonatal growth. J Anim Sci Biotechnol 7:20 DOI 10.1186/s40104-016-0078-8

Schanbacher F. L., Talhouk R. S., Murray F. A., Gherman L. I., Willet L. B. 1998. Milk-born bioactive peptides. Int. Dairy J. 8:393–403.

Singh M., Yadav P., Garg V. K., Sharma A., Singh B., Sharma H. 2015. Quantification of minerals and trace elements in raw caprine milk using flame atomic absorption spectrophotometry and flame photometry. J Food Sci Technol 52(8): 5299–5304 DOI 10.1007/s13197-014-1538-9

Varman H. A, Sutherland J. P. 2001. Milk and Milk Products: Technology, Chemistry and Microbiology. ASPEN Publishers Inc. USA.

Vegarud, G.E., T. Langsrud, C. Svenning. 2000. Mineral-binding milk proteins and peptides; occurrence, biochemical and technological characteristics. Brit. J. Nutr. 84:91-98.

Villeneuve M. P., Lebeuf Y., Gervais R., Tremblay G. F., Vuillemard J. C., Fortin J., Chouinard P. Y. 2013. Milk Volatile Organic Compounds and Fatty acid Profile in cows Feed Timothy as Hay, Pasture or Silage. J. Dairy Sci. 96:7181-7194

Wu G. 2013. Functional amino acids in nutrition and health. Amino Acids 45:407–411 doi: 10.1007/s00726-013-1500


  • There are currently no refbacks.

Copyright (c)  2018 Indonesian Journal of Animal and Veterinary Sciences

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.