SEASONAL DIFFERENCES IN THE EFFECT OF NEMATODE PARASITISM ON WEIGHT GAIN OF SHEEP AND GOATS IN CIGUDEG, WEST JAVA

BERIAJAYA and D. B. COPEMAN

1Department of Biomedical and Tropical Veterinary Science
James Cook University of North Queensland,
Townsville, Qld 4811, Australia

ABSTRACT

This study was designed to investigate the seasonal effect of gastrointestinal nematode parasitism on weight gain of recently weaned sheep and goats in an area of West Java. Most animals were allowed to graze during the day and kept in pens with a raised slatted floor during the night. Three trials were conducted in tandem, each for a period of 4 months. The effect of parasitism was assessed by comparing weight gain of untreated animals with that of otherwise similar group treated each 2 weeks with oxfendazole or albendazole to suppress nematode parasitism. There was no difference between weight gain of treated and untreated sheep and goats during the dry season. Moreover, during the dry season both treated and untreated sheep and goats grew at about twice the rate of untreated animals and 25 percent greater than treated animals during the wet season. As faecal egg counts (and, thus, presumably the level of parasitism) were the same throughout the year it was concluded that the low level of nutrition during the wet season was the main determinant affecting pathogenicity of gastrointestinal nematode parasitism in this study. Furthermore, improved nutrition during the wet season in areas similar to that of this study, especially in sheep and goats for the first 10 weeks after weaning, may obviate the need for anthelmintic therapy, being a means to both increase weight gain and negate the effect of nematode parasitism.

Key words: Sheep, goat, oxfendazole, albendazole, nematode parasitism
studies in Indonesia have demonstrated the benefit of treatment with broad-spectrum anthelmintic on weight gain of sheep and goats (BERIAJAYA and STEVENSON, 1986) but especially with grazing sheep (BERIAJAYA, 1986). It has also been shown that seasonal faecal egg counts varied between the dry and wet season, usually faecal egg counts were high in wet season and low in dry season (BERIAJAYA et al., 1982). However, the seasonal effect of gastrointestinal nematode parasitism on growth rate of sheep and goats under field conditions has not been measured in Indonesia.

The present study was therefore designed to investigate the seasonal effect of gastrointestinal parasitism on weight gain of young sheep and goats in an area of West Java where sheep and goats are commonly reared.

MATERIALS AND METHODS

Location

The study area was 2 villages, Mekarjaya and Argapura, located adjacent to Batuajay in gently undulating terrain about 60 km west of Bogor and about 300 m above sea level. The annual rainfall in this location during 1991 was 3.842 mm; the relatively dry season was between June and August with monthly rainfall of less than 100 mm. Maximum mean monthly temperature fluctuated between 28.5°C and 32.9°C and minimum mean monthly temperature between 21.1°C and 22.9°C. Mean monthly relative humidity ranged between 75% and 89%.

Animals

Thirty six sheep and 72 goats, 34 sheep and 72 goats, and 57 sheep and 52 goats comprising both sexes; aged 4-6 months and recently weaned at the start of observations were used in the first, second and third trials respectively. As each farmer owned only 1 or 2 animals of this age, 45-50 farmers were involved in each of the trials. Usually, each farmer kept either sheep or goats. All experimental animals were reared by the farmers with the remainder of their flock under usual village management conditions. Most animals were allowed to graze during at least part of the day and kept in pens with a raised slatted floor during the night and during rainy weather.

Experimental design

In each trial, animals were stratified according to sex and body weight and allocated at random into 2 similar groups of sheep and 2 similar groups of goats. Each trial animal was identified with a unique tag. Three trials were conducted in tandem, each for a period of 4 months. Trial 1 commenced during the wet season and extended to the beginning of the dry season; trial 2 extended from the early dry season to the beginning of the wet season and trial 3 was carried out entirely during the wet season. In the first two trials, one group of sheep and one group of goats were drenched with oxfendazole (Systamex, Syntex Cooper) at 4.5 mg/kg every 2 weeks for a period of 4 months and the other groups of sheep and goats were not treated. Due to the unavailability of oxfendazole, albendazole (Valbazen, Smith-Kline) at a dose rate of 3.8 mg/kg was used with a similar protocol in the third trial. Details of these trials are shown in Table 1.

Observations

Rectal faecal samples were collected and animals were weighed each 2 weeks. Faecal nematode egg counts were carried out using saturated sodium chloride for floatation and a 0.5 ml Whitlock counting chamber to give a sensitivity of 40 eggs per gram (epg) of faeces. Strongyle larvae were cultured in a moist mixture of faeces and vermiculate for 7 days at room temperature (about 28°C) then up to 100 larvae per culture were identified to genus.

Statistical analysis

During the course of the trial, a number of animals were lost from the study due to sale, slaughter or death. Data were calculated from the surviving animals at the last sampling in each trial. Egg counts were transformed (log₁₀ (x+1)) prior to analysis using multivariate analysis of variance (SAS Institute Inc).

RESULTS

Egg counts

The mean strongyle egg counts of untreated and treated sheep and goats from the 3 trials at Mekarjaya and Argapura, together with monthly rainy days are shown in Figures 1 and 2. In all trials the level of faecal strongyle egg counts in untreated sheep were mostly above 2,000 epg but in trial 1 faecal egg counts dropped
Table 1. Summary description of 3 trials, weight gain and mortality

<table>
<thead>
<tr>
<th>Village, year species</th>
<th>No. Animals</th>
<th>Treatment</th>
<th>Mean weight gain ± SE (g/d)</th>
<th>Mortality (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Village</td>
<td>Start</td>
<td>End</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mekarjaya</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trial1, Feb-Jun '91</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JTT</td>
<td>16</td>
<td>12</td>
<td>Untreated</td>
<td>41.8 ± 6.6 c</td>
</tr>
<tr>
<td>JTT</td>
<td>20</td>
<td>16</td>
<td>Oxfendazole</td>
<td>51.3 ± 4.4 a</td>
</tr>
<tr>
<td>KEG</td>
<td>32</td>
<td>17</td>
<td>Untreated</td>
<td>29.1 ± 4.4 d</td>
</tr>
<tr>
<td>KEG</td>
<td>41</td>
<td>28</td>
<td>Oxfendazole 4.5mg/kg ea 2w</td>
<td>41.6 ± 3.5 b*</td>
</tr>
<tr>
<td>Mekarjaya</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trial2, Jul-Nov '91</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JTT</td>
<td>16</td>
<td>10</td>
<td>Untreated</td>
<td>44.1 ± 7.1 c</td>
</tr>
<tr>
<td>JTT</td>
<td>20</td>
<td>18</td>
<td>Albendazole 4.5mg/kg ea 2w</td>
<td>54.4 ± 3.9 a</td>
</tr>
<tr>
<td>KEG</td>
<td>33</td>
<td>12</td>
<td>Untreated</td>
<td>50.2 ± 8.0 c</td>
</tr>
<tr>
<td>KEG</td>
<td>39</td>
<td>33</td>
<td>Albendazole 4.5mg/kg ea 2w</td>
<td>50.7 ± 2.6 a</td>
</tr>
<tr>
<td>Arnapura</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trial3, Dec-Apr '92</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JTT</td>
<td>28</td>
<td>27</td>
<td>Untreated</td>
<td>23.9 ± 3.3 d</td>
</tr>
<tr>
<td>JTT</td>
<td>29</td>
<td>26</td>
<td>Albendazole 4.5mg/kg ea 2w</td>
<td>35.0 ± 3.7 b*</td>
</tr>
<tr>
<td>KEG</td>
<td>25</td>
<td>20</td>
<td>Untreated</td>
<td>27.4 ± 4.0 d</td>
</tr>
<tr>
<td>KEG</td>
<td>27</td>
<td>21</td>
<td>Albendazole 4.5mg/kg ea 2w</td>
<td>39.0 ± 4.9 b**</td>
</tr>
</tbody>
</table>

JTT = Javanese thin-tail sheep
KEG = Kacang cross Etawah goats

* Treated animals gained more weight than untreated animals in this trial (P < 0.05)
** Treated goats gained more weight than untreated goats in this trial (P = 0.08)

Comparisons:
- a and b were significantly different (P < 0.05)
- c and d were significantly different (P < 0.05)

Figure 1. Mean strongyle eggs per gram (epg) of faeces of Javanese thin tail sheep treated each 2 weeks with oxfendazole (Ofz) at 4.5 mg/kg in trials 1 and 2; albendazole (Abz) at 3.8 mg/kg in trial 3; and their non treated controls.
* Systamex, Syntex Cooper
* Valbazein, Smith-Kline

Figure 2. Mean strongyle eggs per gram (epg) of faeces of Kacang cross Etawah goats treated each 2 weeks with oxfendazole (Ofz) at 4.5 mg/kg in trials 1 and 2; albendazole (Abz) at 3.8 mg/kg on trial 3; and their non treated controls.
* Systamex, Syntex Cooper
* Valbazein, Smith-Kline
to about 1,000 epg in April and May. In contrast, in untreated goats, faecal egg counts were mostly below 2,000 epg with some exceptions in trial 3 when counts increased to peaks above 2,000 epg. There was a trend for faecal egg counts to decline after and initial increase in all trials both in untreated sheep and untreated goats. Initial faecal egg counts in untreated sheep in trial 1 were higher than in the other two trials. Sheep had significantly higher faecal egg counts (P<0.05) than goats in all 3 trials.

Mean proportions of larvae of H. contortus and T. colubriformis recovered from cultured faeces of untreated sheep and goats from the 3 trials are shown in Figures 3 and 4 respectively. The proportion of H. contortus larvae was mostly between 40 and 80 percent, whereas Trichostrongylus spp. larvae constituted 10 to 40 percent and Oesophagostomum spp. were less than 10 percent. Larvae of Cooperia spp. and Bunostomum sp. made up the remainder. There was a trend for the proportion of H. contortus larvae in sheep in trial 1 to increase from February to June and the opposite pattern was seen with T. colubriformis. Since total egg count also dropped substantially over this period the change in proportions between larvae of Haemonchus and Trichostrongylus reflects a bigger drop in egg output for the latter than the former.

Culture of faeces from treated animals yielded few larvae of any genus.

Figure 3. Mean proportion of larvae of Haemonchus contortus and Trichostrongylus spp. recovered from cultured faeces of untreated Javanese thin ttail sheep from 3 trials

Figure 4. Mean proportion of larvae of Haemonchus contortus and Trichostrongylus spp. recovered from cultured faeces of untreated Kacang cross Etawah goats from 3 trials

Effect of anthelmintic treatment on egg count

Two weeks after first treatment with anthelmintics the level of faecal strongyle egg counts of treated sheep and goats had declined significantly (P<0.05) to low levels and values remained low over the study period. Nevertheless, Strongyloides spp. eggs were sometimes found, and cultured faeces from treated animals also occasionally revealed the presence of Strongyloides spp. larvae.

The effect of anthelmintic treatment on live weight gain

Mean daily live weight gain of sheep and goats in each trial over the period of study is shown in Table 1 and mean cumulative weight gain in Figures 5 and 6. Effects of treatment on weight gain were statistically significant (P<0.05) only in goats in trial 1 and sheep in trial 3. However, a significant difference of weight gain at P=0.08 was also seen in goats in trial 3. Although there was a measured improvement in weight gain of treated sheep in trials 1 and 2, the differences were only significant at P=0.23 and P=0.16 respectively. The mean weight gains in treated and untreated goats in trial 2 were similar.

Comparison of mean weight gain of treated animals between trials demonstrated that weight gain of treated sheep in trials 1 (51.3 g/day) and 2 (54.4 g/day) was significantly higher (P<0.05) than that of treated sheep in trial 3 (35.0 g/day). Similar results were also found in goats where weight gain of the treated goats in trial 2
DISCUSSION

High efficacy of the two broad-spectrum anthelmintics, oxfendazole at 4.5 mg/kg and albendazole at 3.8 mg/kg against gastro-intestinal nematode parasites of sheep and goats was demonstrated in the present studies by the consistent very low or zero faecal egg counts of treated animals and low or zero recovery of strongyle larvae from faecal cultures. It is thus reasonable to conclude that there is no measurable benzimidazole resistance in the parasites of sheep and goats in this area of Indonesia; which is not surprising since the only anthelmintics previously used have been traditional herbs, presumably unrelated to benzimidazoles.

The anthelmintic regimen used in treated animals was not intended as demonstration of a practical measure to be applied by farmers for control of parasites. It was used only as a means to allow estimation of the effect of parasitism on weight gain by comparison of the performance of matched treated and untreated groups. Estimation of the effect of parasitism on weight gain from this comparison is likely to be conservative. Contributing to this reduced estimate are pathogenic effects of immature parasites in treated animals and also the lowered level of larval challenge to which all animals are exposed as a result of treating about 20 percent of the flock with anthelmintic. However, the extent to which estimates of suppression of weight gain by parasites is conservative, is likely to be small. Larval stages acquired by treated animals are less pathogenic than their adults and the presence of numerous other untreated sheep and goats in the village not included in the trial which shared common grazing areas with trial animals would minimize the effect treated animals had on level of pasture contamination.

This study clearly demonstrated large seasonal differences in weight gain and in the effect of gastrointestinal parasitism on weight gain of both sheep and goats reared traditionally in this area of West Java. During the dry season (trial 2) both treated and untreated sheep and goats grew about at twice the rate of untreated animals and 25 percent faster than treated animals in trial 3 which was conducted during the wet season. This result indicates that food consumed during the dry season is measurably better than that eaten during the wet season. Moreover, since faecal egg counts (and thus presumably levels of parasitism) within sheep and goats were similar between trials, it may be concluded that level of nutrition was the major determinant affecting pathogenicity of gastrointestinal parasites of sheep and goats in this.
study. Similar interaction between level of nutrition and severity of parasitism in sheep has also been reported by Abbott et al. (1986a, b) and Blackburn et al. (1991). They found that level of dietary protein was of particular importance in this context, but Abbott et al. (1988) also demonstrated the importance of dietary iron in moderating clinical effects of parasitism, particularly haemonchosis.

It is likely that differences between seasons in both quality and quantity of food consumed contributed to the large seasonal differences in rate of growth of both sheep and goats in this study. During wet weather, farmers keep their animals housed and feed them cut herbage and crop residues. Animals are thus restricted in their capacity to select what they eat, and, according, it is likely to be of lower nutritive value that forage selected in the field by grazing animals (Norton, 1984; Fletcher, 1984; Rangkuti et al., 1984). Forage available during the wet season may also be of lower quality due to higher water content than during the dry season.

There was evidence of acquired immunity to gastro-intestinal nematodes in both sheep and goats in the form of reduced faecal egg counts and similarity of weight gain between treated and untreated animals from 6 to 10 weeks after observations commenced. Since animals in these trials were recently weaned at the commencement of observations, this development of resistance is in keeping with reports that sheep become resistant to H. contortus and T. colubriformis about 9 weeks after weaning (Manton et al., 1962; Urquhart et al., 1966; Chejina and Sewell, 1974a, b).

Recommendations for control of gastrointestinal parasitism in sheep and goats in areas similar to the area of this study should thus take into account the need to improve nutrition, both to increase production and as a measure to control worms, especially during the wet season, and especially in animals for the first 10 weeks after weaning. Such improved nutrition may obviate the need for anthelmintic therapy, as indicated by the absence of response to treatment in trial 2. It may also be a more desirable approach than drugs for worm control, as effective anthelmintics are expensive and not readily available in rural Indonesia, whereas supplements based on urea, molasses and minerals could be mixed inexpensively from readily available ingredients. However, the optimum solution may well involve supplementation plus limited use of anthelmintic. Its definition was beyond the scope of this study but deserves high priority.

No link between mortality and parasitism can be made as no post-mortem examination was possible on animals reported to have died during the course of these trials. However, no link is suspected as farmers considered most deaths were due to herbicide poisoning; animals grazed among rubber or oil palm trees, and herbicide was regularly used to kill weeds under these trees. The random pattern of deaths in both treated and untreated groups of animals (Table 1) would also preclude parasitism as the primary causal agent of mortality.

The adverse effects of gastrointestinal nematode parasitism in sheep and goats in this study were considerably less than reported in other Indonesian studies (Berijaya and Stevenson, 1985) mainly because no mortality was attributed to the effects of parasitism. However, since no post-mortem examinations were undertaken in previous studies (Berijaya and Stevenson, 1986; Handayani and Gatenby, 1988), the accuracy of reports of deaths of sheep and goats attributed to gastrointestinal nematode parasitism must also regarded as unproven.

CONCLUSION

There was no difference between weight gain of treated and untreated sheep and goats during the dry season. Both treated and untreated sheep and goats during the dry season grew at about twice the rate of untreated animals and 25 percent greater than treated animals during the wet season. The low level of nutrition during the wet season was probably the main determinant affecting pathogenicity of gastrointestinal nematode parasitism in this study. Furthermore, improved nutrition during the wet season in areas similar to that of this study, especially in sheep and goats for the first 10 weeks after weaning, may obviate the need for anthelmintic therapy, being a means to both increase weight gain and negate the effects of nematode parasitism.

ACKNOWLEDGEMENTS

This study was funded by the Australian Development Assistance Bureau as a part of thesis for PhD. We would like to acknowledge the Director of Research Institute for Veterinary Science for his support of this study. We also thank staffs of the Livestock Service for
assistance with the field trial in the Subdistrict of Cigudeg and the technicians of Parasitology Departement, especially Zaenal Kosasih for their skilled assistance during the trial.

REFERENCES

BERIAJAYA. 1986. The significant importance of gastrointestinal nematodiasis on village sheep in an upland area of Garut, West Java. Penyakit Hewan 18(32): 130-133.

